Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2021, Vol. 61 Issue (10): 1039-1045    DOI: 10.16511/j.cnki.qhdxxb.2021.22.028
  燃料电池与锂离子电池 本期目录 | 过刊浏览 | 高级检索 |
直接膜沉积制备高性能增强型质子交换膜燃料电池膜电极
李雪1, 张虹1, 林程1, 王树博2, 谢晓峰2
1. 北京理工大学 机械与车辆学院, 北京 100081;
2. 清华大学 核能与新能源技术研究院, 北京 100084
Reinforced high-performance membrane electrode assembly for proton exchange membrane fuel cell prepared via direct membrane deposition
LI Xue1, ZHANG Hong1, LIN Cheng1, WANG Shubo2, XIE Xiaofeng2
1. School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China;
2. Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
全文: PDF(2956 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 质子交换膜燃料电池膜电极的性能直接决定燃料电池的输出性能,超薄质子交换膜的使用可以有效提升燃料电池峰值功率。该文将静电纺丝与直接膜沉积技术相结合,制备聚芳醚砜材料并纺丝成为纳米纤维覆于气体扩散电极上,作为薄膜增强层,再以商业全氟磺酸树脂分散液直接沉积成膜制得阴极和阳极。复合薄层膜厚度约为13 μm,氢空电池的峰值功率密度为1.18 W/cm2,与厚度相近的商业Nafion® NC700膜的峰值功率密度0.96 W/cm2相比,提高了23%。通过对膜电极进行综合优化,在氢氧条件下电池峰值功率密度可达3.55 W/cm2,且阴极湿度降低对电池影响不大。利用聚芳醚砜纳米纤维作为增强层制备超薄膜电极具有优异性能,在低湿度条件下亦有高性能输出,具有广泛应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李雪
张虹
林程
王树博
谢晓峰
关键词 质子交换膜燃料电池(PEMFC)直接膜沉积纳米纤维增强层    
Abstract:The performance of proton exchange membrane fuel cells is directly related to the properties of the membrane electrode assembly which can be significantly improved by ultra-thin proton exchange membranes. In this study, electrospinning and direct membrane deposition were used to prepare poly(arylene ether sulfone) nanofiber reinforced proton exchange membranes. The resulting composite membrane was very thin, about 13 μm. The fuel cell peak power density with H2/air with this membrane of 1.18 W/cm2 was 23% higher than with a commercial membrane of similar thickness (Nafion® NC700-CCM), 0.96 W/cm2. By optimizing the catalyst ink composition and using gas diffusion layer with better hydrophobicity, the fuel cell peak power density increased to 3.55 W/cm2 for H2/O2. The relative humidity at the cathode had little influence on the fuel cell performance. Hence, the membrane electrode assembly reinforced with a poly(arylene ether sulfone) nanofiber layer provides excellent fuel cell performance, even with low humidities for fuel cell applications.
Key wordsproton exchange membrane fuel cell (PEMFC)    direct membrane deposition    nanofibers    reinforcement layer
收稿日期: 2021-03-24      出版日期: 2021-08-26
基金资助:国家重点研发计划(2017YFB0103001);国家自然科学基金项目(51975049)
通讯作者: 张虹,副教授,E-mail:bit_zhangh@163.com;林程,教授,E-mail:lincheng@bit.edu.cn     E-mail: bit_zhangh@163.com;lincheng@bit.edu.cn
引用本文:   
李雪, 张虹, 林程, 王树博, 谢晓峰. 直接膜沉积制备高性能增强型质子交换膜燃料电池膜电极[J]. 清华大学学报(自然科学版), 2021, 61(10): 1039-1045.
LI Xue, ZHANG Hong, LIN Cheng, WANG Shubo, XIE Xiaofeng. Reinforced high-performance membrane electrode assembly for proton exchange membrane fuel cell prepared via direct membrane deposition. Journal of Tsinghua University(Science and Technology), 2021, 61(10): 1039-1045.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2021.22.028  或          http://jst.tsinghuajournals.com/CN/Y2021/V61/I10/1039
  
  
  
  
  
  
  
[1] LI X, ZHAO Y, FENG Z M, et al. Ring-opening metathesis polymerization for the preparation of polynorbornene-based proton exchange membranes with high proton conductivity[J]. Journal of Membrane Science, 2017, 528:55-63.
[2] NGUYEN T, WANG X. Multifunctional composite membrane based on a highly porous polyimide matrix for direct methanol fuel cells[J]. Journal of Power Sources, 2010, 195(4):1024-1030.
[3] PAN H, PU H, WAN D, et al. Proton exchange membranes based on semi-interpenetrating polymer networks of fluorine-containing polyimide and Nafion®[J]. Journal of Power Sources, 2010, 195(10):3077-3083.
[4] PENG K, LAI J, LIU Y. Nanohybrids of graphene oxide chemically-bonded with Nafion:Preparation and application for proton exchange membrane fuel cells[J]. Journal of Membrane Science, 2016, 514:86-94.
[5] NGUYEN H, JESTIN J, PORCAR L, et al. Aromatic copolymer/Nafion blends outperforming the corresponding pristine ionomers[J]. ACS Applied Energy Materials, 2018, 1(2):355-367.
[6] KLINGELE M, BREITWIESER M, ZENGERLE R, et al. Direct deposition of proton exchange membranes enabling high performance hydrogen fuel cells[J]. Journal of Materials Chemistry A:Materials for Energy and Sustainability, 2015, 3(21):11239-11245.
[7] WANG Z Q, NAGAO Y. Effects of Nafion impregnation using inkjet printing for membrane electrode assemblies in polymer electrolyte membrane fuel cells[J]. Electrochimica Acta, 2014, 129:343-347.
[8] VIERRATH S, BREITWIESER M, KLINGELE M, et al. The reasons for the high power density of fuel cells fabricated with directly deposited membranes[J]. Journal of Power Sources, 2016, 326:170-175.
[9] BREITWIESER M, KLOSE C, KLINGELE M, et al. Simple fabrication of 12μm thin nanocomposite fuel cell membranes by direct electrospinning and printing[J]. Journal of Power Sources, 2017, 337:137-144.
[10] BREITWIESER M, KLINGELE M, BRITTON B, et al. Improved Pt-utilization efficiency of low Pt-loading PEM fuel cell electrodes using direct membrane deposition[J]. Electrochemistry Communications, 2015, 60:168-171.
[11] BALLENGEE J, PINTAURO P. Composite fuel cell membranes from dual-nanofiber electrospun mats[J]. Macromolecules, 2011, 44(18):7307-7314.
[12] ZHAO Y, LI X, LI W W, et al. A high-performance membrane electrode assembly for polymer electrolyte membrane fuel cell with poly (arylene ether sulfone) nanofibers as effective membrane reinforcements[J]. Journal of Power Sources, 2019, 444:227250.
[13] 徐华池, 裴普成, 吴子尧. 质子交换膜燃料电池氢气渗透电流及电子电阻检测方法[J]. 清华大学学报(自然科学版), 2016, 56(6):587-591.XU H C, PEI P C, WU Z Z. Hydrogen crossover current and electronic resistance detection in a PEM fuel cell[J]. Journal of Tsinghua University (Science and Technology), 2016, 56(6):587-591. (in Chinese)
[14] FERREIRA R B, FALCÃO D S, OLIVEIRA V B, et al. Experimental study on the membrane electrode assembly of a proton exchange membrane fuel cell:Effects of microporous layer, membrane thickness and gas diffusion layer hydrophobic treatment[J]. Electrochimica Acta, 2017, 224:337-345.
[15] ZHAO N N, EDWARDS D, LEI C, et al. The importance of water transport on short-side chain perfluorosulfonic acid membrane fuel cells operating under low relative humidity[J]. Journal of Power Sources, 2013, 242:877-883.
[16] ZHANG J L, TANG Y H, SONG C J, et al. PEM fuel cell relative humidity (RH) and its effect on performance at high temperatures[J]. Electrochimica Acta, 2008, 53(16):5315-5321.
[17] XU H, SONG Y, KUNZ H R, et al. Effect of elevated temperature and reduced relative humidity on ORR kinetics for PEM fuel cells[J]. Journal of the Electrochemical Society, 2005, 152(9):A1828-A1836.
[18] NEYERLIN K C, GU W B, JORNE J, et al. Cathode catalyst utilization for the ORR in a PEMFC:Analytical model and experimental validation[J]. Journal of the Electrochemical Society, 2007, 154(2):B279-B287.
[19] 赵阳, 王树博, 李微微, 等. 质子交换膜燃料电池电压损耗[J]. 清华大学学报(自然科学版), 2020, 60(3):254-262.ZHAO Y, WANG S B, LI W W, et al. Polarization of the membrane electrode assembly in a proton exchange membrane fuel cell[J]. Journal of Tsinghua University (Science and Technology), 2020, 60(3):254-262. (in Chinese)
[20] CIMENTI M, BESSARABOV D, TAM M, et al. Investigation of proton transport in the catalyst layer of PEM fuel cells by electrochemical impedance spectroscopy[J]. ECS Transactions, 2010, 28(23):147-157.
[21] WILLIAMS M V, KUNZ H R, FENTON J M. Analysis of polarization curves to evaluate polarization sources in hydrogen/air PEM fuel cells[J]. Journal of the Electrochemical Society, 2005, 152(3):A635-A644.
[22] ORFANIDI A, MADKIKAR P, EL-SAYED H A, et al. The key to high performance low Pt loaded electrodes[J]. Journal of the Electrochemical Society, 2017, 164(4):F418-F426.
[23] HONG P, XU L F, LI J Q, et al. Modeling of membrane electrode assembly of PEM fuel cell to analyze voltage losses inside[J]. Energy, 2017, 139:277-288.
[24] NONOYAMA N, OKAZAKI S, WEBER A, et al. Analysis of oxygen-transport diffusion resistance in proton-exchange-membrane fuel cells[J]. Journal of the Electrochemical Society, 2011, 158(4):B416-B423.
[25] GARSANY Y, ATKINSON R, SASSIN M B, et al. Improving PEMFC performance using short-side-chain low-equivalent-weight PFSA ionomer in the cathode catalyst layer[J]. Journal of the Electrochemical Society, 2018, 165(5):F381-F391.
[1] 王泽英, 陈涛, 张继伟, 陈金奇, 冯政恒. 基于仿生结构流场的质子交换膜燃料电池的性能[J]. 清华大学学报(自然科学版), 2022, 62(10): 1697-1705.
[2] 李子君, 王树博, 李微微, 朱彤, 谢晓峰. 波形流道增强质子交换膜燃料电池性能[J]. 清华大学学报(自然科学版), 2021, 61(10): 1046-1054.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn