Reinforced high-performance membrane electrode assembly for proton exchange membrane fuel cell prepared via direct membrane deposition
LI Xue1, ZHANG Hong1, LIN Cheng1, WANG Shubo2, XIE Xiaofeng2
1. School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China; 2. Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
Abstract:The performance of proton exchange membrane fuel cells is directly related to the properties of the membrane electrode assembly which can be significantly improved by ultra-thin proton exchange membranes. In this study, electrospinning and direct membrane deposition were used to prepare poly(arylene ether sulfone) nanofiber reinforced proton exchange membranes. The resulting composite membrane was very thin, about 13 μm. The fuel cell peak power density with H2/air with this membrane of 1.18 W/cm2 was 23% higher than with a commercial membrane of similar thickness (Nafion® NC700-CCM), 0.96 W/cm2. By optimizing the catalyst ink composition and using gas diffusion layer with better hydrophobicity, the fuel cell peak power density increased to 3.55 W/cm2 for H2/O2. The relative humidity at the cathode had little influence on the fuel cell performance. Hence, the membrane electrode assembly reinforced with a poly(arylene ether sulfone) nanofiber layer provides excellent fuel cell performance, even with low humidities for fuel cell applications.
[1] LI X, ZHAO Y, FENG Z M, et al. Ring-opening metathesis polymerization for the preparation of polynorbornene-based proton exchange membranes with high proton conductivity[J]. Journal of Membrane Science, 2017, 528:55-63. [2] NGUYEN T, WANG X. Multifunctional composite membrane based on a highly porous polyimide matrix for direct methanol fuel cells[J]. Journal of Power Sources, 2010, 195(4):1024-1030. [3] PAN H, PU H, WAN D, et al. Proton exchange membranes based on semi-interpenetrating polymer networks of fluorine-containing polyimide and Nafion®[J]. Journal of Power Sources, 2010, 195(10):3077-3083. [4] PENG K, LAI J, LIU Y. Nanohybrids of graphene oxide chemically-bonded with Nafion:Preparation and application for proton exchange membrane fuel cells[J]. Journal of Membrane Science, 2016, 514:86-94. [5] NGUYEN H, JESTIN J, PORCAR L, et al. Aromatic copolymer/Nafion blends outperforming the corresponding pristine ionomers[J]. ACS Applied Energy Materials, 2018, 1(2):355-367. [6] KLINGELE M, BREITWIESER M, ZENGERLE R, et al. Direct deposition of proton exchange membranes enabling high performance hydrogen fuel cells[J]. Journal of Materials Chemistry A:Materials for Energy and Sustainability, 2015, 3(21):11239-11245. [7] WANG Z Q, NAGAO Y. Effects of Nafion impregnation using inkjet printing for membrane electrode assemblies in polymer electrolyte membrane fuel cells[J]. Electrochimica Acta, 2014, 129:343-347. [8] VIERRATH S, BREITWIESER M, KLINGELE M, et al. The reasons for the high power density of fuel cells fabricated with directly deposited membranes[J]. Journal of Power Sources, 2016, 326:170-175. [9] BREITWIESER M, KLOSE C, KLINGELE M, et al. Simple fabrication of 12μm thin nanocomposite fuel cell membranes by direct electrospinning and printing[J]. Journal of Power Sources, 2017, 337:137-144. [10] BREITWIESER M, KLINGELE M, BRITTON B, et al. Improved Pt-utilization efficiency of low Pt-loading PEM fuel cell electrodes using direct membrane deposition[J]. Electrochemistry Communications, 2015, 60:168-171. [11] BALLENGEE J, PINTAURO P. Composite fuel cell membranes from dual-nanofiber electrospun mats[J]. Macromolecules, 2011, 44(18):7307-7314. [12] ZHAO Y, LI X, LI W W, et al. A high-performance membrane electrode assembly for polymer electrolyte membrane fuel cell with poly (arylene ether sulfone) nanofibers as effective membrane reinforcements[J]. Journal of Power Sources, 2019, 444:227250. [13] 徐华池, 裴普成, 吴子尧. 质子交换膜燃料电池氢气渗透电流及电子电阻检测方法[J]. 清华大学学报(自然科学版), 2016, 56(6):587-591.XU H C, PEI P C, WU Z Z. Hydrogen crossover current and electronic resistance detection in a PEM fuel cell[J]. Journal of Tsinghua University (Science and Technology), 2016, 56(6):587-591. (in Chinese) [14] FERREIRA R B, FALCÃO D S, OLIVEIRA V B, et al. Experimental study on the membrane electrode assembly of a proton exchange membrane fuel cell:Effects of microporous layer, membrane thickness and gas diffusion layer hydrophobic treatment[J]. Electrochimica Acta, 2017, 224:337-345. [15] ZHAO N N, EDWARDS D, LEI C, et al. The importance of water transport on short-side chain perfluorosulfonic acid membrane fuel cells operating under low relative humidity[J]. Journal of Power Sources, 2013, 242:877-883. [16] ZHANG J L, TANG Y H, SONG C J, et al. PEM fuel cell relative humidity (RH) and its effect on performance at high temperatures[J]. Electrochimica Acta, 2008, 53(16):5315-5321. [17] XU H, SONG Y, KUNZ H R, et al. Effect of elevated temperature and reduced relative humidity on ORR kinetics for PEM fuel cells[J]. Journal of the Electrochemical Society, 2005, 152(9):A1828-A1836. [18] NEYERLIN K C, GU W B, JORNE J, et al. Cathode catalyst utilization for the ORR in a PEMFC:Analytical model and experimental validation[J]. Journal of the Electrochemical Society, 2007, 154(2):B279-B287. [19] 赵阳, 王树博, 李微微, 等. 质子交换膜燃料电池电压损耗[J]. 清华大学学报(自然科学版), 2020, 60(3):254-262.ZHAO Y, WANG S B, LI W W, et al. Polarization of the membrane electrode assembly in a proton exchange membrane fuel cell[J]. Journal of Tsinghua University (Science and Technology), 2020, 60(3):254-262. (in Chinese) [20] CIMENTI M, BESSARABOV D, TAM M, et al. Investigation of proton transport in the catalyst layer of PEM fuel cells by electrochemical impedance spectroscopy[J]. ECS Transactions, 2010, 28(23):147-157. [21] WILLIAMS M V, KUNZ H R, FENTON J M. Analysis of polarization curves to evaluate polarization sources in hydrogen/air PEM fuel cells[J]. Journal of the Electrochemical Society, 2005, 152(3):A635-A644. [22] ORFANIDI A, MADKIKAR P, EL-SAYED H A, et al. The key to high performance low Pt loaded electrodes[J]. Journal of the Electrochemical Society, 2017, 164(4):F418-F426. [23] HONG P, XU L F, LI J Q, et al. Modeling of membrane electrode assembly of PEM fuel cell to analyze voltage losses inside[J]. Energy, 2017, 139:277-288. [24] NONOYAMA N, OKAZAKI S, WEBER A, et al. Analysis of oxygen-transport diffusion resistance in proton-exchange-membrane fuel cells[J]. Journal of the Electrochemical Society, 2011, 158(4):B416-B423. [25] GARSANY Y, ATKINSON R, SASSIN M B, et al. Improving PEMFC performance using short-side-chain low-equivalent-weight PFSA ionomer in the cathode catalyst layer[J]. Journal of the Electrochemical Society, 2018, 165(5):F381-F391.