Abstract:The motor servo control of machine tools influences the processing efficiency and processing quality of the machine tool. Most servo motor controllers use the proportional integral derivative (PID) control which depends on accurate determination of the control parameters. However, accurate determination of the control parameters requires much time, effort and experience with manual tuning usually required to provide the desired accuracy. This paper presents a method for tuning servo control parameters based on a genetic algorithm. A theoretical model is developed and refined based on the machine tool conditions. The fitness function is developed based on the parallel and hybrid machine tool characteristics with alarm indexes and optimal indexes. The servo control parameters given by the genetic algorithm are then tested on a 5-axis hybrid machine tool. The results show that the optimized parameters give better servo motor following accuracy than the engineer's parameters.Thus, this parameter tuning method based on a genetic algorithm saves time and effort while giving more accurate servo control parameters.
王立平, 孔祥昱, 于广. 基于遗传算法的并混联机床电机伺服控制参数整定[J]. 清华大学学报(自然科学版), 2021, 61(10): 1106-1114.
WANG Liping, KONG Xiangyu, YU Guang. Motor servo control parameter tuning for parallel and hybrid machine tools based on a genetic algorithm. Journal of Tsinghua University(Science and Technology), 2021, 61(10): 1106-1114.
[1] 李烨, 严欣平. 永磁同步电动机伺服系统研究现状及应用前景[J]. 微电机(伺服技术), 2001(4):30-33. LI Y, YAN X P. The research status and application prospects of permanent magnet synchronous motor servo system[J]. Micromotor (Servo Technology), 2001(4):30-33. (in Chinese) [2] 杨耕, 罗应立. 电机与运动控制系统[M]. 2版. 北京:清华大学出版社, 2014. YANG G, LUO Y L. Motor and motion control system[M]. 2nd ed. Beijing: Tsinghua University Press, 2014. (in Chinese) [3] 阮毅, 杨影, 陈伯时. 电力拖动自动控制系统:运动控制系统[M]. 5版. 北京:机械工业出版社, 2016. RUAN Y, YANG Y, CHEN B S. Electric drive automatic control system:Motion control system[M]. 5th ed. Beijing:Mechanical Industry Press, 2016. (in Chinese) [4] 梁艳, 李永东. 无传感器永磁同步电机矢量控制系统概述[J]. 电气传动, 2003(4):4-9. LIANG Y, LI Y D. Summary of vector control system of sensorless permanent magnet synchronous motor[J]. Electric Drive, 2003(4):4-9. (in Chinese) [5] BENNETT S. Development of the PID controller[J]. IEEE Control Systems Magazine, 1993, 13(6):58-62. [6] ZIEGLER J G, NICHOLS N B. Optimum setting for automatic controllers[J]. Transaction of ASME, 1944, 64:759-768. [7] 李亚聪, 康亚彪. 数控机床伺服参数调整方法[J]. 科技创新导报, 2020, 17(2):66-68. LI Y C, KANG Y B. Servo parameter adjustment method of CNC machine tool[J]. Science and Technology Innovation Herald, 2020, 17(2):66-68. (in Chinese) [8] KUMAR R, GUPTA R A, SINGH B. Intelligent tuned PID controllers for PMSM drive:A critical analysis[C]//2006 IEEE International Conference on Industrial Technology. Mumbai, India, 2006:2055-2060. [9] NAGARAJ B, MURUGANANTH N. A comparative study of PID controller tuning using GA, EP, PSO and ACO[C]//2010 International Conference on Communication Control and Computing Technologies. Ramanathapuram, India, 2010:305-313. [10] 葛继科, 邱玉辉, 吴春明, 等. 遗传算法研究综述[J]. 计算机应用研究, 2008(10):2911-2916. GE J K, QIU Y H, WU C M, et al. Overview of genetic algorithm research[J]. Application Research of Computers, 2008(10):2911-2916. (in Chinese) [11] HOLLAND J H. Adaptation in natural and artificial systems:An introductory analysis with applications to biology, control, and artificial intelligence[M]. Boston, USA:MIT Press, 1992. [12] DE JONG K A. Analysis of the behavior of a class of genetic adaptive systems[D]. Ann Arbor, USA:University of Michigan, 1975. [13] GOLDENBERG D E. Genetic algorithms in search, optimization and machine learning[M]. Upper Saddle River, USA: Addison-Wesley, 1989. [14] 郝齐, 关立文, 王立平. 基于遗传算法并联机床电机伺服系统控制参数整定[J]. 清华大学学报(自然科学版), 2010, 50(11):1801-1806. HAO Q, GUAN L W, WANG L P. Control parameter tuning of parallel machine tool motor servo system based on genetic algorithm[J]. Journal of Tsinghua University (Science and Technology), 2010, 50(11):1801-1806. (in Chinese) [15] 齐战, 李茂军, 肖雨荷, 等. 基于改进状态空间模型遗传算法的分数阶PID控制器优化设计[J]. 控制与信息技术, 2019(6):18-23. QI Z, LI M J, XIAO Y H, et al. Optimal design of fractional PID controller based on improved state-space model genetic algorithm[J]. Control and Information Technology, 2019(6): 18-23. (in Chinese) [16] 郑光廷, 王琦, 陈龙胜, 等. 基于遗传算法整定PID的倾转翼飞机过渡段定高控制[J/OL].[2021-01-21]. 航空兵器:1-7. http://kns.cnki.net/kcms/detail/41.1228.TJ.20200902.1448.011.html. ZHENG G T, WANG Q, CHEN L S, et al. Tuning PID based on genetic algorithm for tilt-wing aircraft transition section height control[J/OL].[2021-01-21]. Aviation Weapon:1-7. http://kns.cnki.net/kcms/detail/41.1228.TJ.20200902.1448.011.html. (in Chinese) [17] 孙雨萌, 张旭秀. 改进遗传算法整定自抗扰控制器参数及应用[J]. 自动化与仪表, 2020, 35(3):13-17, 45. SUN Y M, ZHANG X X. Tuning parameters and application of auto disturbance rejection controller by improved genetic algorithm[J]. Automation and Instrumentation, 2020, 35(3):13-17, 45. (in Chinese) [18] JAEN-CUELLAR A Y, DE JESÚS ROMERO-TRONCOSO R, MORALES-VELAZQUEZ L, et al. PID-controller tuning optimization with genetic algorithms in servo systems[J]. International Journal of Advanced Robotic Systems, 2013, 10(9):324. [19] 王立平, 吴军, 于广. 一种三自由度并联主轴头机构:中国201510096720.7[P]. 2015-03-04. WANG L P, WU J, YU G. A three-degree-of-freedom parallel spindle head mechanism:China 201510096720.7[P]. 2015-03-04. (in Chinese)