Optimization of a micro turbojet engine combustion chamber
LI Dongjie1, ZHOU Bohao1, LIANG Qian2, LAN Xudong1
1. Aero Engine Research Center, School of Aerospace Engineering, Tsinghua University, Beijing 100084, China; 2. Beijing Institute of Space Long March Vehicle, Beijing 100076, China
Abstract:Micro turbojet engine combustor designs cannot be directly scaled from large aero-engine combustion chamber designs due to the different fuel supply modes and inflow conditions that affect the micro turbojet combustor efficiency. Bad designs lead to high wall temperatures, poor combustion stability and nonuniform outlet temperature distributions. Both ANSYS and CFX were used in this study to analyze the air flow and combustion characteristics in the combustion chamber of a micro turbojet engine. The numerical simulations were validated by comparisons with cold state tests. A "gas swirling liquid" design was then developed to improve the combustion. The numerical simulation results show that this design reduces the combustion chamber outlet temperature distribution coefficient from the traditional 0.54 to 0.15, which greatly improves the combustion chamber and turbine efficiencies and the thermal efficiency, and the thrust of the micro turbojet.
[1] 林宇震, 刘俊, 许全宏, 等. 微小"Γ"型蒸发管在常压条件下蒸发率研究[J]. 航空动力学报, 2006, 21(5):843-847.LIN Y Z, LIU J, XU Q H, et al. Study on vaporization rate of a mini Γ-vaporizer under atmospheric pressure condition[J]. Journal of Aerospace Power, 2006, 21(5):843-847. (in Chinese) [2] 马健文, 微型涡喷发动机燃烧室优化分析[D]. 北京:清华大学, 2017. MA J W. Optimization analysis of micro turbojet engine combustor[D]. Beijing:Tsinghua University, 2017. (in Chinese) [3] BADAMI M, NUCCIO P, SIGNORETTO A. Experimental and numerical analysis of a small-scale turbojet engine[J]. Energy Conversion and Management, 2013, 76:225-233. [4] GIERAS M M, STAИKOWSKI T. Computational study of an aerodynamic flow through a micro-turbine engine combustor[J]. Journal of Power Technologies, 2012, 92(2):68-79. [5] CHMIELEWSKI M, GIERAS M. Impact of variable geometry combustor on performance and emissions from miniature gas turbine engine[J]. Journal of the Energy Institute, 2017, 90(2):257-264. [6] 郭渊, 蒋雪辉, 郑严. 微型涡轮喷气发动机蒸发管式燃烧室数值模拟[J]. 战术导弹技术, 2011(1):109-113. GUO Y, JIANG X H, ZHENG Y. Numerical simulation for the combustor with vaporizing tube of micro turbine engine[J]. Tactical Missile Technology, 2011(1):109-113. (in Chinese) [7] 袁有志, 王立平, 关立文. 微型环形燃烧室数值模拟及优化设计[J]. 清华大学学报(自然科学版), 2007, 47(2):198-201, 209. YUAN Y Z, WANG L P, GUAN L W. Numerical simulations and optimization of a micro annular combustor[J]. Journal of Tsinghua University (Science and Technology), 2007, 47(2):198-201, 209. (in Chinese) [8] 陈银. 涡耗散概念燃烧模型耦合简化机理的多维数值模拟[D]. 合肥:中国科学技术大学, 2015. CHEN Y. Multi-dimensional numerical simulation based on eddy dissipation concept combustion model coupling reduced chemical reaction[D]. Hefei:University of Science and Technology of China, 2015. (in Chinese) [9] 吴翊, 荣命哲, 杨飞, 等. 引入6波段P-1辐射模型的三维空气电弧等离子体数值分析[J]. 物理学报, 2008, 57(9):5761-5767. WU Y, RONG M Z, YANG F, et al. Introduction of 6-band P-1 radiation model for numerical analysis of three-dimensional air arc plasma[J]. Acta Physica Sinica, 2008, 57(9):5761-5767. (in Chinese) [10] 李聪, 方蜀州, 张平. 微型涡喷发动机燃烧室数值模拟[J]. 推进技术, 2008, 29(5):513-518. LI C, FANG S Z, ZHANG P. Numerical simulation of annular combustion chamber for micro-turbine engine[J]. Journal of Propulsion Technology, 2008, 29(5):513-518. (in Chinese) [11] 严传俊, 范玮. 燃烧学[M]. 3版. 西安:西北工业大学出版社, 2016. YAN C J, FAN W. Combustion[M]. 3rd ed. Xi'an:Northwestern Polytechnical University Press, 2016. (in Chinese) [12] 曾川, 王洪铭, 单鹏. 微涡喷发动机离心甩油盘环形折流燃烧室的设计与实验研究[J]. 航空动力学报, 2003, 18(1):92-96. ZENG C, WANG H M, SHAN P. The design and study of the annular combustion chamber with centrifugal fuel injection[J]. Journal of Aerospace Power, 2003, 18(1):92-96. (in Chinese) [13] 黄勇, 林宇震, 樊未军, 等. 燃烧与燃烧室[M]. 北京:北京航空航天大学出版社, 2009. HUANG Y, LIN Y Z, FAN W J, et al. Combustion and combustion chamber[M]. Beijing:Beihang University Press, 2009. (in Chinese)