Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2021, Vol. 61 Issue (11): 1281-1288    DOI: 10.16511/j.cnki.qhdxxb.2021.26.006
  机械工程 本期目录 | 过刊浏览 | 高级检索 |
基于时序数据库的产品数字孪生模型海量动态数据建模方法
郑孟蕾, 田凌
清华大学 机械工程系, 北京 100084
Digital product twin modeling of massive dynamic data based on a time-series database
ZHENG Menglei, TIAN Ling
Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(1298 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 海量动态数据的集成建模是产品数字孪生技术亟待解决的重要基础问题之一。该文通过分析产品数字孪生模型的数据特征,明确动态数据的建模目标。研究对比各类数据存储模式的特点,提出基于时序数据库的产品数字孪生模型海量动态数据建模方法,结合产品动态数据的结构、属性和规模特征,发挥数据库面向时序数据存储和处理的优势。运用该方法基于轴承振动信号数据集进行建模分析,测试结果表明:相比于基于关系型数据库的传统方案,该方法在海量动态数据条件下有效提升了数据的导入、存储和分析性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑孟蕾
田凌
关键词 数字孪生动态数据时序数据库工业大数据    
Abstract:The integrated modeling of massive dynamic data sets is a key basic technology that needs to be solved for digital product twins. The data modeling target is identified by analyzing the characteristics of various data types for the digital product twin. The features of various data storage modes were studied here to develop a digital product twin modeling method for massive dynamic data sets based on a time-series database. The structure, attributes and scale characteristics of the dynamic product data are used to improve the database performance. A case analysis of rolling bearing vibration data sets is used to show how this method works with massive dynamic data sets.
Key wordsdigital twin    dynamic data    time-series database    industrial big data
收稿日期: 2020-11-15      出版日期: 2021-10-19
基金资助:国家自然科学基金资助项目(51675299);北京市自然科学基金资助项目(3182012);国家重点研发计划重点专项项目(2018YFB1700604);河北省重点研发计划项目(20314402D);清华大学自主科研计划项目(2018Z05JZY006)
通讯作者: 田凌,教授,E-mail:tianling@tsinghua.edu.cn     E-mail: tianling@tsinghua.edu.cn
引用本文:   
郑孟蕾, 田凌. 基于时序数据库的产品数字孪生模型海量动态数据建模方法[J]. 清华大学学报(自然科学版), 2021, 61(11): 1281-1288.
ZHENG Menglei, TIAN Ling. Digital product twin modeling of massive dynamic data based on a time-series database. Journal of Tsinghua University(Science and Technology), 2021, 61(11): 1281-1288.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2021.26.006  或          http://jst.tsinghuajournals.com/CN/Y2021/V61/I11/1281
  
  
  
  
  
  
  
[1] 工四100术语编写组. 数字孪生|工四100术语(编号308)[EB/OL]. (2016-05-19)[2020-11-13]. https://mp.weixin.qq.com/s/98xLVNpEC4i8WM7HakCSpA. Editing Group for Terminology of Industry 4.0. Digital twin|One hundred industry 4.0 terms(NO.308)[EB/OL]. (2016-05-19)[2020-11-13]. https://mp.weixin.qq.com/s/98xLVNpEC4i8WM7HakCSpA. (in Chinese)
[2] 庄存波, 刘检华, 熊辉, 等. 产品数字孪生体的内涵、体系结构及其发展趋势[J]. 计算机集成制造系统, 2017, 23(4):753-768. ZHUANG C B, LIU J H, XIONG H, et al. Connotation, architecture and trends of product digital twin[J]. Computer Integrated Manufacturing Systems, 2017, 23(4):753-768. (in Chinese)
[3] TAO F, QI Q L. Make more digital twins[J]. Nature, 2019, 573(7775):490-491.
[4] GE Digital. Predix:The platform for the industrial Internet[EB/OL]. (2016-03)[2020-11-13]. https://ecosystems4innovating.files.wordpress.com/2016/11/predix-the-platform-for-the-industrial-internet-whitepaper.pdf.
[5] GRIEVES M W. Virtually perfect:Driving innovative and lean products through product lifecycle management[M]. Cocoa Beach:Space Coast Press, 2011.
[6] GRIEVES M W, VICKERS M. Digital twin:Mitigating unpredictable, undesirable emergent behavior in complex systems[M]//KAHLEN F J, FLUMERFELT S, ALVES A. Transdisciplinary Perspectives on Complex Systems. Cham:Springer, 2016.
[7] TAO F, ZHANG M, LIU Y S, et al. Digital twin driven prognostics and health management for complex equipment[J]. CIRP Annals, 2018, 67(1):169-172.
[8] ZWEBER J V, KOLONAY R M, KOBRYN P, et al. Digital thread and twin for systems engineering:Pre-MDD through TMRR[C]//55th AIAA Aerospace Sciences Meeting. Grapevine, USA:American Institute of Aeronautics and Astronautics Inc, 2017.
[9] KOBRYN P, TUEGEL E, ZWEBER J, et al. Digital thread and twin for systems engineering:EMD to disposal[C]//55th AIAA Aerospace Sciences Meeting. Grapevine, USA:American Institute of Aeronautics and Astronautics Inc, 2017.
[10] TAO F, SUI F Y, LIU A, et al. Digital twin-driven product design framework[J]. International Journal of Production Research, 2018, 57(12):3935-3953.
[11] 李浩, 陶飞, 王昊琪, 等. 基于数字孪生的复杂产品设计制造一体化开发框架与关键技术[J]. 计算机集成制造系统, 2019, 25(6):1320-1336. LI H, TAO F, WANG H Q, et al. Integration framework and key technologies of complex product design-manufacturing based on digital twin[J]. Computer Integrated Manufacturing Systems, 2019, 25(6):1320-1336. (in Chinese)
[12] SCHROEDER G N, STEINMETZ C, PEREIRA C E, et al. Digital twin data modeling with automation ML and a communication methodology for data exchange[J]. IFAC-Papersonline, 2016, 49(30):12-17.
[13] SCHNEIDER G F, WICAKSONO H, OVTCHAROVA J. Virtual engineering of cyber-physical automation systems:The case of control logic[J]. Advanced Engineering Informatics, 2019, 39:127-143.
[14] ZHENG P, SIVABALAN A S. A generic tri-model-based approach for product-level digital twin development in a smart manufacturing environment[J]. Robotics and Computer-Integrated Manufacturing, 2020, 64:101958.
[15] SCHLUSE M, ATORF L, ROSSMANN J. Experimentable digital twins for model-based systems engineering and simulation-based development[C]//2017 Annual IEEE International Systems Conference (SysCon). Montreal, Canada:IEEE, 2017.
[16] ULLAH A M M S. Modeling and simulation of complex manufacturing phenomena using sensor signals from the perspective of Industry 4.0[J]. Advanced Engineering Informatics, 2019, 39:1-13.
[17] AGAPAKI E, BRILAKIS I. CLOI-NET:Class segmentation of industrial facilities' point cloud datasets[J]. Advanced Engineering Informatics, 2020, 45:101121.
[18] 金晓航, 王宇, ZHANG B. 工业大数据驱动的故障预测与健康管理[J/OL]. 计算机集成制造系统, (2020-08-17). https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CAPJLAST&filename=JSJJ20200814004&v=MDcyNTQ5TXptUm42ajU3VDNmbHFXTTBDTEw3UjdxZFp1WnVGaXpsVkx6TklsMD1MejdCWkxHNEhOSE1wNDVCWk9zTFl3. JIN X H, WANG Y, ZHANG B. Industrial big data-driven fault prognostics and health management[J/OL]. Computer Integrated Manufacturing Systems, (2020-08-17). https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CAPJLAST&filename=JSJJ20200814004&v=MDcyNTQ5TXptUm42ajU3VDNmbHFXTTBDTEw3UjdxZFp1WnVGaXpsVkx6TklsMD1MejdCWkxHNEhOSE1wNDVCWk9zTFl3. (in Chinese)
[19] 江天, 乔嘉林, 黄向东, 等. 开源软件中的大数据管理技术[J]. 科技导报, 2020, 38(3):103-114. JIANG T, QIAO J L, HUANG X D, et al. Big data technologies in open source software:A survey[J]. Science & Technology Review, 2020, 38(3):103-114. (in Chinese)
[20] 黄一, 王鸿东, 程锋瑞, 等. 基于时序数据库的无人船信息管理系统设计与性能测试[J]. 中国舰船研究, 2019, 14(4):161-166. HUANG Y, WANG H D, CHENG F R, et al. Design and performance test of USV information management system based on time-series database[J]. Chinese Journal of Ship Research, 2019, 14(4):161-166. (in Chinese)
[21] 徐化岩, 初彦龙. 基于influxDB的工业时序数据库引擎设计[J]. 计算机应用与软件. 2019, 36(9):33-36, 40. XU H Y, CHU Y L. Design of industrial time series database engine based on InfluxDB[J]. Computer Applications and Software. 2019, 14(4):161-166. (in Chinese)
[22] RINALDI S, BONAFINI F, FERRARI P, et al. Impact of data model on performance of time series database for internet of things applications[C]//2019 IEEE International Instrumentation and Measurement Technology Conference. New Zealand, 2019:1212-1217.
[23] National Aeronautics and Space Administration (NASA). PCoE Datasets[EB/OL].[2020-11-13]. https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository.
[24] InfluxData Inc. InfluxDB[EB/OL].[2020-11-13]. https://www.influxdata.com/products/influxdb-overview/.
[25] Oracle Corporation. MySQL[EB/OL].[2020-11-13]. https://www.mysql.com/.
[1] 邹静, 李斌, 张利, 骆扬, 孙运传, 李世贤. 基于Hash聚合动态数据持有性方案安全性分析[J]. 清华大学学报(自然科学版), 2017, 57(11): 1145-1149,1158.
[2] 曹来成, 何文文, 刘宇飞, 郭显, 冯涛. 跨云存储环境下协同的动态数据持有方案[J]. 清华大学学报(自然科学版), 2017, 57(10): 1048-1055.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn