Abstract:The integrated modeling of massive dynamic data sets is a key basic technology that needs to be solved for digital product twins. The data modeling target is identified by analyzing the characteristics of various data types for the digital product twin. The features of various data storage modes were studied here to develop a digital product twin modeling method for massive dynamic data sets based on a time-series database. The structure, attributes and scale characteristics of the dynamic product data are used to improve the database performance. A case analysis of rolling bearing vibration data sets is used to show how this method works with massive dynamic data sets.
郑孟蕾, 田凌. 基于时序数据库的产品数字孪生模型海量动态数据建模方法[J]. 清华大学学报(自然科学版), 2021, 61(11): 1281-1288.
ZHENG Menglei, TIAN Ling. Digital product twin modeling of massive dynamic data based on a time-series database. Journal of Tsinghua University(Science and Technology), 2021, 61(11): 1281-1288.
[1] 工四100术语编写组. 数字孪生|工四100术语(编号308)[EB/OL]. (2016-05-19)[2020-11-13]. https://mp.weixin.qq.com/s/98xLVNpEC4i8WM7HakCSpA. Editing Group for Terminology of Industry 4.0. Digital twin|One hundred industry 4.0 terms(NO.308)[EB/OL]. (2016-05-19)[2020-11-13]. https://mp.weixin.qq.com/s/98xLVNpEC4i8WM7HakCSpA. (in Chinese) [2] 庄存波, 刘检华, 熊辉, 等. 产品数字孪生体的内涵、体系结构及其发展趋势[J]. 计算机集成制造系统, 2017, 23(4):753-768. ZHUANG C B, LIU J H, XIONG H, et al. Connotation, architecture and trends of product digital twin[J]. Computer Integrated Manufacturing Systems, 2017, 23(4):753-768. (in Chinese) [3] TAO F, QI Q L. Make more digital twins[J]. Nature, 2019, 573(7775):490-491. [4] GE Digital. Predix:The platform for the industrial Internet[EB/OL]. (2016-03)[2020-11-13]. https://ecosystems4innovating.files.wordpress.com/2016/11/predix-the-platform-for-the-industrial-internet-whitepaper.pdf. [5] GRIEVES M W. Virtually perfect:Driving innovative and lean products through product lifecycle management[M]. Cocoa Beach:Space Coast Press, 2011. [6] GRIEVES M W, VICKERS M. Digital twin:Mitigating unpredictable, undesirable emergent behavior in complex systems[M]//KAHLEN F J, FLUMERFELT S, ALVES A. Transdisciplinary Perspectives on Complex Systems. Cham:Springer, 2016. [7] TAO F, ZHANG M, LIU Y S, et al. Digital twin driven prognostics and health management for complex equipment[J]. CIRP Annals, 2018, 67(1):169-172. [8] ZWEBER J V, KOLONAY R M, KOBRYN P, et al. Digital thread and twin for systems engineering:Pre-MDD through TMRR[C]//55th AIAA Aerospace Sciences Meeting. Grapevine, USA:American Institute of Aeronautics and Astronautics Inc, 2017. [9] KOBRYN P, TUEGEL E, ZWEBER J, et al. Digital thread and twin for systems engineering:EMD to disposal[C]//55th AIAA Aerospace Sciences Meeting. Grapevine, USA:American Institute of Aeronautics and Astronautics Inc, 2017. [10] TAO F, SUI F Y, LIU A, et al. Digital twin-driven product design framework[J]. International Journal of Production Research, 2018, 57(12):3935-3953. [11] 李浩, 陶飞, 王昊琪, 等. 基于数字孪生的复杂产品设计制造一体化开发框架与关键技术[J]. 计算机集成制造系统, 2019, 25(6):1320-1336. LI H, TAO F, WANG H Q, et al. Integration framework and key technologies of complex product design-manufacturing based on digital twin[J]. Computer Integrated Manufacturing Systems, 2019, 25(6):1320-1336. (in Chinese) [12] SCHROEDER G N, STEINMETZ C, PEREIRA C E, et al. Digital twin data modeling with automation ML and a communication methodology for data exchange[J]. IFAC-Papersonline, 2016, 49(30):12-17. [13] SCHNEIDER G F, WICAKSONO H, OVTCHAROVA J. Virtual engineering of cyber-physical automation systems:The case of control logic[J]. Advanced Engineering Informatics, 2019, 39:127-143. [14] ZHENG P, SIVABALAN A S. A generic tri-model-based approach for product-level digital twin development in a smart manufacturing environment[J]. Robotics and Computer-Integrated Manufacturing, 2020, 64:101958. [15] SCHLUSE M, ATORF L, ROSSMANN J. Experimentable digital twins for model-based systems engineering and simulation-based development[C]//2017 Annual IEEE International Systems Conference (SysCon). Montreal, Canada:IEEE, 2017. [16] ULLAH A M M S. Modeling and simulation of complex manufacturing phenomena using sensor signals from the perspective of Industry 4.0[J]. Advanced Engineering Informatics, 2019, 39:1-13. [17] AGAPAKI E, BRILAKIS I. CLOI-NET:Class segmentation of industrial facilities' point cloud datasets[J]. Advanced Engineering Informatics, 2020, 45:101121. [18] 金晓航, 王宇, ZHANG B. 工业大数据驱动的故障预测与健康管理[J/OL]. 计算机集成制造系统, (2020-08-17). https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CAPJLAST&filename=JSJJ20200814004&v=MDcyNTQ5TXptUm42ajU3VDNmbHFXTTBDTEw3UjdxZFp1WnVGaXpsVkx6TklsMD1MejdCWkxHNEhOSE1wNDVCWk9zTFl3. JIN X H, WANG Y, ZHANG B. Industrial big data-driven fault prognostics and health management[J/OL]. Computer Integrated Manufacturing Systems, (2020-08-17). https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CAPJLAST&filename=JSJJ20200814004&v=MDcyNTQ5TXptUm42ajU3VDNmbHFXTTBDTEw3UjdxZFp1WnVGaXpsVkx6TklsMD1MejdCWkxHNEhOSE1wNDVCWk9zTFl3. (in Chinese) [19] 江天, 乔嘉林, 黄向东, 等. 开源软件中的大数据管理技术[J]. 科技导报, 2020, 38(3):103-114. JIANG T, QIAO J L, HUANG X D, et al. Big data technologies in open source software:A survey[J]. Science & Technology Review, 2020, 38(3):103-114. (in Chinese) [20] 黄一, 王鸿东, 程锋瑞, 等. 基于时序数据库的无人船信息管理系统设计与性能测试[J]. 中国舰船研究, 2019, 14(4):161-166. HUANG Y, WANG H D, CHENG F R, et al. Design and performance test of USV information management system based on time-series database[J]. Chinese Journal of Ship Research, 2019, 14(4):161-166. (in Chinese) [21] 徐化岩, 初彦龙. 基于influxDB的工业时序数据库引擎设计[J]. 计算机应用与软件. 2019, 36(9):33-36, 40. XU H Y, CHU Y L. Design of industrial time series database engine based on InfluxDB[J]. Computer Applications and Software. 2019, 14(4):161-166. (in Chinese) [22] RINALDI S, BONAFINI F, FERRARI P, et al. Impact of data model on performance of time series database for internet of things applications[C]//2019 IEEE International Instrumentation and Measurement Technology Conference. New Zealand, 2019:1212-1217. [23] National Aeronautics and Space Administration (NASA). PCoE Datasets[EB/OL].[2020-11-13]. https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository. [24] InfluxData Inc. InfluxDB[EB/OL].[2020-11-13]. https://www.influxdata.com/products/influxdb-overview/. [25] Oracle Corporation. MySQL[EB/OL].[2020-11-13]. https://www.mysql.com/.