Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2021, Vol. 61 Issue (2): 144-151    DOI: 10.16511/j.cnki.qhdxxb.2020.22.026
  专题:安全监测 本期目录 | 过刊浏览 | 高级检索 |
基于视频识别的混合非机动车速度分布模型
刘贺子, 陈涛
清华大学 工程物理系, 北京 100084
Speed distribution model of mixed non-motorized vehicles based on video recognition
LIU Hezi, CHEN Tao
Department of Engineering Physics, Tsinghua University, Beijing 100084, China
全文: PDF(1298 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 中国非机动车出行近年来逐渐复兴并形成了复杂的混合交通流动,造成了交通运行和安全问题,因此对混合非机动车速度分布进行准确建模是重要的现实需求。该文首先介绍了利用深度神经网络进行多目标跟踪的数据采集方法,然后输入非机动车道的拍摄视频进行自动识别,高效获取实测数据;在对车速进行统计分析后,通过信息准则确定混合Gauss模型的最优组分,采用期望最大化算法求解模型参数的极大似然估计,并建立模型参数与道路运行状况和统计特征之间的联系。所使用的智能化视频识别方法提高了数据采集效率,求解参数前进行组分选择可以提高建模效率。拟合结果表明:混合Gauss模型对非机动车速度分布的描述比单分布模型更准确。在流动不受阻碍时,混合Gauss模型的结果以非机动车类型划分组分,其参数与速度均值、标准差及各类型车的比例相关;在高峰时,组分划分与根据流动状态进行分类是一致的,其中较快组分的平均速度接近车辆自由流动速度。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘贺子
陈涛
关键词 交通调查混合非机动车速度分布模型视频识别    
Abstract:Non-motorized vehicle travel has gradually revived in China to form complex, mixed traffic flows in recent years that lead to traffic movement and safety problems. The characteristics of the mixed non-motorized vehicle speeds need to be accurately modeled to characterize this problem. Deep neural networks are used here for multi-target tracking in videos of the non-motorized vehicle lanes to measure the non-motorized vehicle speeds. A statistical analysis of the vehicle speeds is used to determine the number of components of the Gaussian mixture model for the speeds using information criteria with the maximum likelihood estimate of each parameter calculated using the expectation maximization algorithm. Then, the model parameters are related to the road operating conditions and statistical characteristics. This intelligent video recognition method accelerates data collection to obtain sufficient data and the component determination prior to other parameters improves the modeling efficiency. The fitting results show that the Gaussian mixture model more realistically describes the speed distribution of non-motorized vehicles than the single distribution model. The Gaussian mixture model results are divided into the various types of non-motorized vehicles when the vehicle flow is not obstructed and the parameters are related to the average speed, the standard deviation and the ratio of different vehicle types. The classifications according to flow states are consistent during peak periods with the mean speed of the faster component close to the free flow velocity of the vehicles.
Key wordstraffic survey    mixed non-motorized vehicle    speed distribution model    video recognition
收稿日期: 2020-05-12      出版日期: 2020-12-29
基金资助:陈涛,研究员,E-mail:chentao.a@tsinghua.edu.cn
引用本文:   
刘贺子, 陈涛. 基于视频识别的混合非机动车速度分布模型[J]. 清华大学学报(自然科学版), 2021, 61(2): 144-151.
LIU Hezi, CHEN Tao. Speed distribution model of mixed non-motorized vehicles based on video recognition. Journal of Tsinghua University(Science and Technology), 2021, 61(2): 144-151.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2020.22.026  或          http://jst.tsinghuajournals.com/CN/Y2021/V61/I2/144
  
  
  
  
  
  
  
  
  
  
[1] 聂星. 中国城市非机动车交通发展现状研究[J]. 中国新技术新产品, 2016(21):126.NIE X. Research on the development of non-motorized vehicle transportation in Chinese cities[J]. New Technologies & New Products of China, 2016(21):126. (in Chinese)
[2] 中华人民共和国统计局. 中国统计年鉴[M]. 北京:中国统计出版社, 2019.Statistics Bureau of the People's Republic of China. China statistical yearbook[M]. Beijing:China Statistics Press, 2019. (in Chinese)
[3] YANG J, HU Y H, DU W, et al. Unsafe riding practice among electric bikers in Suzhou, China:An observational study[J]. BMJ Open, 2014, 4(1):e003902.
[4] 陶思然. 基于自行车与电动自行车的二元混合交通流特性研究[D]. 西安:长安大学, 2015.TAO S R. Binary mixed traffic characteristics based on bicycle and electric bicycle[D]. Xi'an:Chang'an University, 2015. (in Chinese)
[5] KATTI V K, RAGHAVACHARI S. Modeling of mixed traffic with speed data as inputs for the traffic simulation models[M]//Highway Research Bulletin 28. New Delhi, India:Indian Roads Congress, 1986:35-48.
[6] ALLEN D P, ROUPHAIL N, HUMMER J E, et al. Operational analysis of uninterrupted bicycle facilities[J]. Transportation Research Record:Journal of the Transportation Research Board, 1998, 1636(1):29-36.
[7] CHERRY C R. Electric two-wheelers in China:Analysis of environmental, safety and mobility impacts[R]. Berkeley, USA:University of California, 2007:101.
[8] 陶志兴. 机非混行路段交通流特性研究[D]. 长春:吉林大学, 2007.TAO Z X. Research on characteristics of mixed vehicle-bicycle traffic flow on road section[D]. Changchun:Jilin University, 2007. (in Chinese)
[9] LIN S, HE M, TAN Y L, et al. Comparison study on operating speeds of electric bicycles and bicycles:Experience from field investigation in Kunming[J]. Transportation Research Record:Journal of the Transportation Research Board, 2008, 2048(1):52-59.
[10] 平萍. 城市路段非机动车流交通特性研究[D]. 镇江:江苏大学, 2018.PING P. Research on traffic characteristics of non-motorized vehicle flow in urban section[D]. Zhenjiang:Jiangsu University, 2018. (in Chinese)
[11] 徐程, 曲昭伟, 王殿海, 等. 混合自行车交通流速度分布模型[J]. 浙江大学学报(工学版), 2017, 51(7):1331-1338.XU C, QU Z W, WANG D H, et al. Speed distribution model for heterogeneous bicycle traffic flow[J]. Journal of Zhejiang University (Engineering Science), 2017, 51(7):1331-1338. (in Chinese)
[12] 梁春岩. 自行车交通流特性及其应用研究[D]. 长春:吉林大学, 2005.LIANG C Y. Study on characteristics and application of bicycle traffic flow[D]. Changchun:Jilin University, 2005. (in Chinese)
[13] 王丹. 路段非机动车交通流特性研究[D]. 西安:长安大学, 2014.WANG D. Research on characteristics of non-motor vehicle traffic flow on road section[D]. Xi'an:Chang'an University, 2014. (in Chinese)
[14] 李海航. 城市非机动车道通行能力研究[D]. 石家庄:石家庄铁道大学, 2015.LI H H. Research on the capacity of non-motorized vehicle lane of city[D]. Shijiazhuang:Shijiazhuang Tiedao University, 2015. (in Chinese)
[15] 周旦. 城市基本路段混合非机动车交通流特性研究[D]. 杭州:浙江大学, 2016.ZHOU D. Study on characterisitcs of mixed bicycle traffic flow in basic sections of urban road[D]. Hangzhou:Zhejiang University, 2016. (in Chinese)
[16] BEWLEY A, GE Z Y, OTT L, et al. Simple online and realtime tracking[C]//Proceedings of 2016 IEEE International Conference on Image Processing. Phoenix, USA:IEEE, 2016:3464-3468.
[17] REDMON J, FARHADI A. YOLOv3:An incremental improvement[Z/OL]. arXiv:1804.02767, 2018.
[18] ZAGORUYKO S, KOMODAKIS N. Wide residual networks[C]//Proceedings of the British Machine Vision Conference 2016. York, UK:BMVA Press, 2016:1-12.
[19] WOJKE N, BEWLEY A. Deep cosine metric learning for person re-identification[C]//Proceedings of 2018 IEEE Winter Conference on Applications of Computer Vision. Lake Tahoe, USA, 2018:00087.
[20] ZHENG L, SHEN L Y, TIAN L, et al. Scalable person re-identification:A benchmark[C]//Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago, Chile, 2015:1116-1124.
[21] 何民. 混合交通流微观仿真关键技术研究[D]. 北京:北京工业大学, 2003.HE M. Research on key technologies of microscopic simulation of mixed traffic flow[D]. Beijing:Beijing Industry University, 2003. (in Chinese)
[22] COIFMAN B. Revisiting the empirical fundamental relationship[J]. Transportation Research Part B:Methodological, 2014, 68:173-184.
[23] WANG H Z, LI J, CHEN Q Y, et al. Logistic modeling of the equilibrium speed-density relationship[J]. Transportation Research Part A:Policy and Practice, 2011, 45(6):554-566.
[1] 孙智源, 陆化普. 考虑交通大数据的交通检测器优化布置模型[J]. 清华大学学报(自然科学版), 2016, 56(7): 743-750.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn