Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2021, Vol. 61 Issue (3): 193-201    DOI: 10.16511/j.cnki.qhdxxb.2020.26.026
  索驱动机器人 本期目录 | 过刊浏览 | 高级检索 |
欠约束绳牵引并联支撑系统运动学分析与鲁棒控制
王晓光, 吴军, 林麒
厦门大学 航空航天学院, 厦门 361005
Kinematics analysis and control of under-constrained cable-driven parallel suspension systems
WANG Xiaoguang, WU Jun, LIN Qi
Department School of Aerospace Engineering, Xiamen University, Xiamen 361005, China
全文: PDF(1665 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 欠约束绳牵引并联机器人可以为风洞受迫/自由动态试验提供一种新的支撑方式。该文针对多输入、多输出、具有不确定性的欠约束绳牵引并联支撑系统,研究其运动特性并提出一种基于非线性干扰观测器的计算力矩控制方法。首先,针对欠约束系统几何静力耦合问题,采用自适应粒子群算法对运动学进行求解与分析,确定初始平衡状态。其次,采用计算力矩控制方法,并考虑实际系统存在外部干扰等,设计非线性干扰观测器予以补偿;基于Lyapunov函数法证明闭环系统的稳定性。最后,以风洞动态试验中典型的单自由度正弦振荡以及双自由度运动轨迹为例进行仿真。结果表明:该控制方法能够有效补偿外部干扰,在期望轨迹上可以实现高精度跟踪,且绳拉力始终保持张紧状态;同时还能模拟未受控方向的自由运动特性。上述研究成果可为欠约束绳牵引并联支撑在风洞试验中的实际应用提供技术支撑。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王晓光
吴军
林麒
关键词 绳牵引并联机器人欠约束几何静力耦合干扰观测器计算力矩控制    
Abstract:Under-constrained cable-driven parallel suspension systems can be used to support wind tunnels for forced and free dynamics tests. This paper describes the motion characteristics of an under-constrained cable-driven parallel suspension system and a computed torque control method based on a nonlinear disturbance observer. An adaptive particle swarm optimization algorithm was used to solve the coupled equations for the kinematics and statics of the under-constrained system to determine the initial equilibrium state. A computed torque controller was designed based on the dynamics equations with a nonlinear disturbance observer used to compensate for the external interference. The system stability was proven by the Lyapunov function method. Then, the control system was used to control typical dynamic responses in wind tunnel tests, such as single degree-of-freedom (DOF) sinusoidal oscillations and two DOF motion. The results show that the control method effectively compensates for external disturbances with accurate tracking of the desired trajectory while always keeping the cables taut. The system can also simulate an aircraft model’s free motion in uncontrolled directions. Thus, this research describes how to use an under-constrained cable-driven parallel suspension system to improve wind tunnel tests.
Key wordscable-driven parallel robots    under-constrained    geometric-static coupling    disturbance observer    computed torque control
收稿日期: 2020-06-07      出版日期: 2021-03-06
引用本文:   
王晓光, 吴军, 林麒. 欠约束绳牵引并联支撑系统运动学分析与鲁棒控制[J]. 清华大学学报(自然科学版), 2021, 61(3): 193-201.
WANG Xiaoguang, WU Jun, LIN Qi. Kinematics analysis and control of under-constrained cable-driven parallel suspension systems. Journal of Tsinghua University(Science and Technology), 2021, 61(3): 193-201.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2020.26.026  或          http://jst.tsinghuajournals.com/CN/Y2021/V61/I3/193
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] 崔志伟, 唐晓强, 侯森浩, 等. 索驱动并联机器人可控刚度特性[J]. 清华大学学报(自然科学版), 2018, 58(2):204-211. CUI Z W, TANG X Q, HOU S H, et al. Characteristics of controllable stiffness for cable-driven parallel robots[J]. Journal of Tsinghua University (Science and Technology), 2018, 58(2):204-211. (in Chinese)
[2] WANG W L, DUAN B Y, PENG B, et al. New type of flexible parallel link manipulator actuated by cable[J]. Control Theory and Applications, 2001, 18(3):328-332.
[3] GAGLIARDINI L, CARO S, GOUTTEFARDE M, et al. A reconfigurable cable-driven parallel robot for sandblasting and painting of large structures[M]//POTT A, BRUCKMANN T. Cable-Driven Parallel Robots. Cham:Springer International Publishing, 2015:275-291.
[4] SHAO Z F, TANG X Q, WANG L P, et al. Dynamic modeling and wind vibration control of the feed support system in FAST[J]. Nonlinear Dynamics, 2012, 67(2):965-985.
[5] ROGNANT M, COURTEILLE E. Improvement of cable tension observability through a new cable driving unit design[M]//GOSSELIN C, CARDOU P, BRUCKMANN T, et al. Cable-Driven Parallel Robots. Cham:Springer International Publishing, 2017:280-291.
[6] LAMBERT T J, VUKASINOVIC B, GLEZER A. Aerodynamic flow control of axisymmetric bluff body by coupled wake interactions[J]. AIAA Journal, 2018, 56(8):2992-3007.
[7] 王晓光, 林麒. 风洞试验绳牵引并联支撑技术研究进展[J]. 航空学报, 2018, 39(10):1-20. WANG X G, LIN Q. Progress in wire-driven parallel suspension technologies in wind tunnel tests[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(10):1-20. (in Chinese)
[8] MING A, TOSHIRO H. Study on multiple degree-of-freedom positioning mechanism using wires (Part 1):Concept, design and control[J]. International Journal of the Japan Society for Precision Engineering, 1994, 28(2):131-138.
[9] CARRICATO M, MERLET J P. Direct geometrico-static problem of under-constrained cable-driven parallel robots with three cables[C]//2011 IEEE International Conference on Robotics and Automation. Shanghai, China:IEEE, 2011.
[10] ABBASNEJAD G, CARRICATO M. Real solutions of the direct geometrico-static problem of under-constrained cable-driven parallel robots with 3 cables:A numerical investigation[J]. Meccanica, 2012, 47(7):1761-1773.
[11] ABBASNEJAD G, CARRICATO M. Direct geometrico-static problem of underconstrained cable-driven parallel robots with n cables[J]. IEEE Transactions on Robotics, 2015, 31(2):468-478.
[12] BERTI A, MERLET J P, CARRICATO M. Solving the direct geometrico-static problem of underconstrained cable-driven parallel robots by interval analysis[J]. The International Journal of Robotics Research, 2016, 35(6):723-739.
[13] SHANG W W, ZHANG B Y, ZHANG B, et al. Synchronization control in the cable space for cable-driven parallel robots[J]. IEEE Transactions on Industrial Electronics, 2019, 66(6):4544-4554.
[14] SCHENK C, BVLTHOFF H H, MASONE C. Robust adaptive sliding mode control of a redundant cable driven parallel robot[C]//2015 19th International Conference on System Theory, Control and Computing (ICSTCC). Cheile Gradistei, Romania:IEEE, 2015.
[15] 刘骏, 王晓光, 王宇奇, 等. 风洞试验绳牵引并联支撑系统自适应滑模控制[J]. 控制理论与应用, 2019, 36(9):1477-1485.LUI J, WANG X G, WANG Y Q, et al. Adaptive sliding mode control of wire-driven parallel suspension system in wind tunnel tests[J]. Control Theory and Applications, 2019, 36(9):1477-1485. (in Chinese)
[16] YAMAMOTO M, YANAI N, MOHRI A. Trajectory control of incompletely restrained parallel-wire-suspended mechanism based on inverse dynamics[J]. IEEE Transactions on Robotics, 2004, 20(5):840-850.
[17] HEYDEN T, WOERNLE C. Dynamics and flatness-based control of a kinematically undetermined cable suspension manipulator[J]. Multibody System Dynamics, 2006, 16(2):155-177.
[18] HWANG S W, BAK J H, YOON J, et al. Trajectory generation to suppress oscillations in under-constrained cable-driven parallel robots[J]. Journal of Mechanical Science and Technology, 2016, 30(12):5689-5697.
[19] BARBAZZA L, ZANOTTO D, ROSATI G, et al. Design and optimal control of an underactuated cable-driven micro-macro robot[J]. IEEE Robotics and Automation Letters, 2017, 2(2):896-903.
[20] ZHANG N, SHANG W W. Dynamic trajectory planning of a 3-DOF under-constrained cable-driven parallel robot[J]. Mechanism and Machine Theory, 2016, 98:21-35.
[21] KENNEDY J, EBERHART R. Particle swarm optimization[C]//Proceedings of ICNN'95-International Conference on Neural Networks. Perth, Australia:IEEE, 1995.
[22] STEINBRUNN M, MOERKOTTE G, KEMPER A. Heuristic and randomized optimization for the join ordering problem[J]. The VLDB Journal, 1997, 6(3):191-208.
[23] 周凡桂, 王晓光, 高忠信, 等. 双目视觉绳系支撑飞行器模型位姿动态测量[J]. 航空学报, 2019, 40(12):39-49. ZHOU F G, WANG X G, GAO Z X, et al. Binocular vision-based measurement of dynamic motion for aircraft model suspended by wire system[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(12):39-49. (in Chinese)
[1] 韦慧玲, 仇原鹰, 盛英, 陈海初, 卢清华. 绳牵引并联机器人悬链线优化解算方法[J]. 清华大学学报(自然科学版), 2021, 61(3): 224-229.
[2] 姜文雪, 周凯. 基于干扰观测器的磁悬浮系统精确反馈线性化[J]. 清华大学学报(自然科学版), 2015, 55(10): 1067-1071.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn