Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2021, Vol. 61 Issue (3): 224-229    DOI: 10.16511/j.cnki.qhdxxb.2020.26.019
  索驱动机器人 本期目录 | 过刊浏览 | 高级检索 |
绳牵引并联机器人悬链线优化解算方法
韦慧玲1, 仇原鹰2, 盛英2, 陈海初1, 卢清华1
1. 佛山科学技术学院 机电工程学院, 佛山 528225;
2. 西安电子科技大学 机电工程学院, 西安 710071
Optimal solution method for the cable catenary between cable-driven parallel robots
WEI Huiling1, QIU Yuanying2, SHENG Ying2, CHEN Haichu1, LU Qinghua1
1. College of Mechanical and Electrical Engineering, Foshan University, Foshan 528225, China;
2. School of Mechanical-Electrical Engineering, Xidian University, Xi'an 710071, China
全文: PDF(1307 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 针对大跨度绳牵引并联机器人难以建立精确动力学模型的问题,该文提出一种绳索非线性悬链线模型降维优化解算方法。该方法首先通过柔索微分单元和积分法推导绳索悬链线模型的差分方程并确定其边界条件;根据系数矩阵行列式为零的方法对悬链线模型的超越方程进行降维;进一步通过换元法和Taylor展开方法求出悬链线模型的解析解;接着基于Newton迭代方法得出悬链线模型的精确数值解,分析数值解的取值范围确定其正确符号;最后,对降维优化解算方法的合理性和有效性通过实例计算进行了验证。研究成果可为绳牵引并联机构的动力学精确建模和稳定运动实时控制提供理论依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
韦慧玲
仇原鹰
盛英
陈海初
卢清华
关键词 绳牵引并联机器人柔索悬链线模型解析解数值解    
Abstract:Accurate dynamic models are difficult to develop for long-span cable-driven parallel robots. This paper presents a reduced dimension optimization method for designing nonlinear cable catenaries. This paper gives the differential equation for the catenary and its boundary conditions. The dimension of the transcendental equation of the catenary model was then reduced according to the boundary conditions with the analytical solution obtained using the substitution method and the Taylor expansion method. Then, the Newton method was used to numerically solve the catenary model to study the range and characteristics of the numerical solution. Finally, the effectiveness of the reduced dimension optimization method are verified by examples. This research provides a theoretical basis for accurate dynamic modeling and real-time motion stability control strategies for cable-driven parallel mechanisms.
Key wordscable-driven parallel robots    cables    catenary models    analytic solutions    numerical solutions
收稿日期: 2020-03-17      出版日期: 2021-03-06
引用本文:   
韦慧玲, 仇原鹰, 盛英, 陈海初, 卢清华. 绳牵引并联机器人悬链线优化解算方法[J]. 清华大学学报(自然科学版), 2021, 61(3): 224-229.
WEI Huiling, QIU Yuanying, SHENG Ying, CHEN Haichu, LU Qinghua. Optimal solution method for the cable catenary between cable-driven parallel robots. Journal of Tsinghua University(Science and Technology), 2021, 61(3): 224-229.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2020.26.019  或          http://jst.tsinghuajournals.com/CN/Y2021/V61/I3/224
  
  
  
[1] JIANG X L, BARNETT E, GOSSELIN C. Periodic trajectory planning beyond the static workspace for six-DOF cable-suspended parallel robots[J]. IEEE Transactions on Robotics, 2018, 34(3):781-793.
[2] TANG X Q. An overview of the development for cable-driven parallel manipulator[J]. Advances in Mechanical Engineering, 2014, 6:823028.
[3] LIN J Q, WU C Y, CHANG J L. Design and implementation of a multi-degrees-of-freedom cable-driven parallel robot with gripper[J]. International Journal of Advanced Robotic Systems, 2018, 15(5):1-10.
[4] LI H, YAO R. Optimal orientation planning and control deviation estimation on FAST cable-driven parallel robot[J]. Advances in Mechanical Engineering, 2014, 6:716097.
[5] KUAN J Y, PASCH K, HERR H. A high-performance cable-drive module for the development of wearable devices[J]. IEEE/ASME Transactions on Mechatronics, 2018, 23(3):1238-1248.
[6] DOUADI L, SPINELLO D, SARFRAZ W. Planar kinematics analysis of a snake-like robot[J]. Robotica, 2014, 32(5):659-675.
[7] XIAO Y W, LIN Q, ZHENG Y Q, et al. Model aerodynamic tests with a wire-driven parallel suspension system in low-speed wind tunnel[J]. Chinese Journal of Aeronautics, 2010, 23:393-400.
[8] GOUTTEFARDE M, COLLARD J F, RIEHL N, et al. Geometry selection of a redundantly actuated cable-suspended parallel robot[J]. IEEE Transactions on Robotics, 2015, 31(2):501-510.
[9] AFLAKIANA A, SAFARYAZDIB A, MASOULEH M T, et al. Experimental study on the kinematic control of a cable suspended parallel robot for object tracking purpose[J]. Mechatronics, 2018, 50:160-176.
[10] ZI B, WANG N, QIAN S, et al. Design, stiffness analysis and experimental study of a cable-driven parallel 3D printer[J]. Mechanism and Machine Theory, 2019, 132:207-222.
[11] CONE L L. Skycam:An aerial robotic camera system[J]. Byte, 1985, 10(10):122-124.
[12] ALBUS J, BOSTELMAN R, DAGALAKIS N. The NIST robocrane[J]. Journal of Robotic System, 1993, 10(5):709-724.
[13] SCALERA L, GALLINA P, SERIANI S. Cable-based robotic crane (CBRC):Design and implementation of overhead traveling cranes based on variable radius drums[J]. IEEE Transactions on Robotics, 2018, 34(2):474-485.
[14] TEMPEL P, SCHNELLE F, POTT A. Eberhard, design and programming for cable-driven parallel robots in the german pavilion at the EXPO[J]. Machines, 2015, 3(3):223-241.
[15] ZHU W B, NAN R D, REN G. Modeling of a feed support system for FAST[J]. Experimental Astronomy, 2004, 17(1-3):177-184.
[16] TANG X Q, CHAI X M, TANG L W, et al. Accuracy synthesis of a multi-level hybrid positioning mechanism for the feed support system in FAST[J]. Robotics and Computer-Integrated Manufacturing, 2014, 30:565-575.
[17] KOZAK K, ZHOU Q, WANG J S. Static analysis of cable-driven manipulators with non-negligible cable mass[J]. IEEE Transactions on Robotics. 2006, 22(3):425-433.
[18] DUAN B Y. A new design project of the line feed structure for large spherical radio telescope and its nonlinear dynamic analysis[J]. Mechatronics, 1999, 9(1):53-64.
[19] DUAN X C, QIU Y Y, BAO H, et al. Real-time motion planning-based vibration control of a macro-micro parallel manipulator system for super antenna[J]. Journal of Vibroengineering, 2014, 16(2):694-703.
[20] DU J L, BAO H, CUI C Z, et al. Nonlinear PD control of a long-span cable-supporting manipulator in quasi-static motion[J]. Journal of Dynamic Systems Measurement and Control-Transactions of the ASME, 2012, 134(1):11022-11030.
[21] DUAN B Y, QIU Y Y, ZHANG F S, et al. On design and experiment of the feed cable-suspended structure for super antenna[J]. Mechatronics, 2009, 19(4):503-509.
[22] YAO R, TANG X Q, WANG J S, et al. Dimensional optimization design of the four-cable-driven parallel manipulator in FAST[J]. IEEE/ASME Transactions on Mechatronics, 2010, 15(6):932-941.
[23] SRIDHAR D, WILLIAMS Ⅱ R L. Kinematics and statics including cable sag for large cable-suspended robots[J]. Global Journal of Researches in Engineering, 2017, 17(1):1-19.
[24] WEI H L, QIU Y Y, SHENG Y. On the cable pseudo-drag problem of cable-driven parallel camera robots at high speeds[J]. Robotica, 2019, 37(10):1695-1709.
[25] IRVINE M. Cable structures[M]. Cambridge:MIT Press, 1981.
[26] SHAO Z F, TANG X Q, WANG L, et al. Dynamic modeling and wind vibration control of the feed support system in FAST[J]. Nonlinear Dynamics, 2012, 67(2):965-985.
[27] QIU Y Y, DUAN B Y, WEI Q, et al. Optimal distribution of the cable tensions and structural vibration control of the cable-cabin flexible structure[J]. Structural Engineering and Mechanics, 2002, 14(1):39-56.
[28] 李辉, 朱文白, 潘高峰. 500m口径球面射电望远镜进舱缆线连接机构的设计及其静力学分析[J]. 机械工程学报, 2010, 46(7):7-15.LI H, ZHU W B, PAN G F. Design of linking mechanisms of cable into focus cabin of five-hundred meters aperture spherical radio telescope and its static analysis[J]. Journal of Mechanical Engineering, 2010, 46(7):7-15. (in Chinese)
[29] ZI B, DUAN B Y, DU J L, et al. Dynamic modeling and active control of a cable-suspended parallel robot[J]. Mechatronics, 2008, 18(1):1-12.
[30] DU J L, AGRAWAL S K. Dynamic modeling of cable-driven parallel manipulators with distributed mass flexible cables[J]. Journal of Vibration and Acoustics, 2015, 137:1-8.
[31] SU Y, QIU Y Y, LIU P. The continuity and real-time performance of the cable tension determining for a suspend cable-driven parallel camera robot[J]. Advanced Robotics, 2015, 29(12):743-752.
[32] MERIAM J L, KRAIGE L G. Engineering mechanics:Statics[M]. 7th Edition. Hoboken:Wiley, 2011.
[1] 刘鹏, 乔心州. 大跨度完全约束空间3-DOF柔索驱动并联机器人稳定性灵敏度研究[J]. 清华大学学报(自然科学版), 2022, 62(9): 1548-1558.
[2] 赵雅聪, 王启明. FAST索牵引并联机器人的动力学建模与仿真[J]. 清华大学学报(自然科学版), 2022, 62(11): 1772-1779.
[3] 王晓光, 吴军, 林麒. 欠约束绳牵引并联支撑系统运动学分析与鲁棒控制[J]. 清华大学学报(自然科学版), 2021, 61(3): 193-201.
[4] 杨继锋, 姚蕊, 陈捷. 索牵引弹体装填机器人的尺寸优化设计[J]. 清华大学学报(自然科学版), 2021, 61(3): 217-223.
[5] 郭吉昌, 朱志明, 王鑫, 马国锐. 全位置焊接机器人逆运动学数值求解及轨迹规划方法[J]. 清华大学学报(自然科学版), 2018, 58(3): 292-297.
[6] 郭孟武, 钟宏志. 两种严格界面向目标误差估计方法的等价性[J]. 清华大学学报(自然科学版), 2017, 57(4): 362-368.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn