Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2021, Vol. 61 Issue (5): 385-394    DOI: 10.16511/j.cnki.qhdxxb.2021.21.016
  小干扰稳定性 本期目录 | 过刊浏览 | 高级检索 |
分布式电源接入的微电网小干扰鲁棒稳定判据与参数安全域自适应覆盖算法
马千里1, 魏韡1, 毛航银2, 梅生伟1
1. 清华大学 电机工程与应用电子技术系, 北京 100084;
2. 国网浙江省电力有限公司, 杭州 310007
A robust small-signal stability criterion for microgrid with distributed energy and an adaptive cover algorithm for the parametric security region
MA Qianli1, WEI Wei1, MAO Hangyin2, MEI Shengwei1
1. Department of Electrical Engineering, Tsinghua University, Beijing 100084, China;
2. State Grid Zhejiang Electric Power Company, Hangzhou 310007, China
全文: PDF(5433 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 随着微电网中分布式电源和电力电子装置占比的不断增长,多源微电网稳定性受到诸多控制参数的影响,给系统安全稳定运行带来新的挑战。针对数学模型中含不确定参数的线性定常系统,当参数在给定区间内变化时,该文给出了一种基于Kronecker矩阵和Kronecker相关矩阵的鲁棒稳定性判据,估算保证系统小干扰稳定的参数最大变化范围,称为鲁棒稳定半径。进一步对参数空间进行采样,对于稳定的采样参数,采用鲁棒稳定半径估算其周围保证小干扰稳定的邻域;对于不稳定的采样参数,采用参数灵敏度估算其周围小干扰失稳的邻域。设计了一种自适应覆盖算法,通过超立方覆盖能够保证系统小干扰稳定的参数集合,该集合称为小干扰安全域(small-signal stability region,SSSR)。该算法可以自动调整超立方体的大小,避免了冗余的搜索计算,提高了计算效率。采用包含旋转发电机和逆变器电源的微电网算例验证了该算法的有效性。该算法对微电网控制参数设计和安全稳定分析提供了有益参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马千里
魏韡
毛航银
梅生伟
关键词 微电网小干扰稳定性小干扰安全域鲁棒稳定判据    
Abstract:With the increasing proportion of distributed energy sources and power electronic devices in microgrids, the stability of multisource microgrids is influenced by the control parameters, thereby bringing great challenges to the safe and stable operation of a system. Aiming at a linear time-invariant system with uncertain parameters that change in given intervals, this paper gives a robust stability criterion based on the Kronecker matrix and Kronecker-related matrix to estimate the maximum variation range of the parameters that ensure a small-signal stability of the system, called the robust stability radius. The parameter space is further sampled. For stable parameters, the robust stability radius is used to estimate the neighborhood that ensures the small-signal stability of the system, and for unstable parameters, parameter sensitivity is used to estimate the neighborhood that is not small-signal stable. This paper proposes an adaptive coverage algorithm that can acquire a set of parameters that guarantees system stability through a hypercube coverage, called the small-signal stability region (SSSR). The proposed algorithm can adjust the size of the hypercube adaptively, thereby avoiding redundant searching calculations and improving calculation efficiency. A case study on a microgrid with generator-based and inverter-based energy resources is used to verify the effectiveness of the proposed algorithm. This algorithm can provide useful information for microgrid control parameter design and stability analysis.
Key wordsmicrogrid    small-signal stability    small-signal stability region    robust stability criterion
收稿日期: 2020-11-25      出版日期: 2021-04-25
基金资助:国家电网有限公司科技项目(SGZJ0000KXJS1900418)
通讯作者: 梅生伟,教授,E-mail:meishengwei@tsinghua.edu.cn      E-mail: meishengwei@tsinghua.edu.cn
作者简介: 马千里(1998—),男,博士研究生。
引用本文:   
马千里, 魏韡, 毛航银, 梅生伟. 分布式电源接入的微电网小干扰鲁棒稳定判据与参数安全域自适应覆盖算法[J]. 清华大学学报(自然科学版), 2021, 61(5): 385-394.
MA Qianli, WEI Wei, MAO Hangyin, MEI Shengwei. A robust small-signal stability criterion for microgrid with distributed energy and an adaptive cover algorithm for the parametric security region. Journal of Tsinghua University(Science and Technology), 2021, 61(5): 385-394.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2021.21.016  或          http://jst.tsinghuajournals.com/CN/Y2021/V61/I5/385
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] 周孝信, 陈树勇, 鲁宗相, 等. 能源转型中我国新一代电力系统的技术特征[J]. 中国电机工程学报, 2018, 38(7):1893-1904.ZHOU X X, CHEN S Y, LU Z X, et al. Technology features of the new generation power system in China[J]. Proceedings of the CSEE, 2018, 38(7):1893-1904. (in Chinese)
[2] 周孝信, 鲁宗相, 刘应梅, 等. 中国未来电网的发展模式和关键技术[J]. 中国电机工程学报, 2014, 34(29):4999-5008.ZHOU X X, LU Z X, LIU Y M, et al. Development models and key technologies of future grid in China[J]. Proceedings of the CSEE, 2014, 34(29):4999-5008. (in Chinese)
[3] 康重庆, 姚良忠. 高比例可再生能源电力系统的关键科学问题与理论研究框架[J]. 电力系统自动化, 2017, 41(9):2-11.KANG C Q, YAO Z L. Key scientific issues and theoretical research framework for power systems with high proportion of renewable energy[J]. Automation of Electric Power Systems, 2017, 41(9):2-11. (in Chinese)
[4] 杨新法, 苏剑, 吕志鹏, 等. 微电网技术综述[J].中国电机工程学报, 2014, 34(1):57-70.YANG X F, SU J, LÜ Z P, et al. Overview on micro-grid technology[J]. Proceedings of the CSEE, 2014, 34(1):57-70. (in Chinese)
[5] 徐青山. 分布式发电与微电网技术[M]. 北京:人民邮电出版社, 2011.XU Q S. Distributed generation and micro-grid[M]. Beijing:Posts & Telecom Press, 2011. (in Chinese)
[6] 范元亮, 苗逸群. 基于下垂控制结构微网小扰动稳定性分析[J]. 电力系统保护与控制, 2012, 44(4):1-7.FAN Y L, MIAO Y Q. Small signal stability analysis of microgrid droop controlled power allocation loop[J]. Power System Protection and Control, 2012, 44(4):1-7. (in Chinese)
[7] 肖朝霞, 王成山, 王守相. 含多微型电源的微网小信号稳定性分析[J]. 电力系统自动化, 2009, 33(6):81-85.XIAO Z X, WANG C S, WANG S X. Small signal stability analysis of microgrid containing multiple micro sources[J]. Automation of Electric Power Systems, 2009, 33(6):81-85. (in Chinese)
[8] DJUKANOVIC M, KHAMMASH M, VITTAL V. Application of the structured singular value theory for robust stability and control analysis in multi-machine power systems. I. Framework development[J]. IEEE Transactions on Power Systems, 1998:13(4):1311-1316.
[9] SUMSUROOAH S, ODAVIC M, BOZHKO S, et al. Robust stability analysis of a DC/DC buck converter under multiple parametric uncertainties[J]. IEEE Transactions on Power Electronics, 2018:33(6):5426-5441.
[10] SUMSUROOAH S, ODAVIC M, BOZHKO S. μ approach to robust stability domains in the space of parametric uncertainties for a power system with ideal CPL[J]. IEEE Transactions on Power Electronics, 2018, 33(1):833-844.
[11] RIGATOS G, SIANO P. Design of robust electric power system stabilizers using Kharitonov's theorem[J]. Mathematics and Computers in Simulation, 2011, 82(1):181-191.
[12] KHUTORYANSKY E, PAI M A. Parametric robust stability of power systems using generalized Kharitonov's theorem[C]//Proceedings of the 36th IEEE Conference on Decision and Control. San Diego, CA, USA:IEEE, 1997, 4:3097-3099.
[13] ZHOU J H, SHI P, GAN D Q, et al. Large-scale power system robust stability analysis based on value set approach[J]. IEEE Transactions on Power Systems, 2017, 32(5):4012-4023.
[14] SHI P, JIANG C, GAN D, et al. New value set approach for robust stability of power systems with wind power penetration[J]. IEEE Transactions on Sustainable Energy, 2019, 10(2):811-821.
[15] ZHOU J H, ZHENG T Y, GAN D Q. Value-set-based power system robust stability analysis:Further results[J]. IEEE Transactions on Power Systems, 2019, 34(2):1383-1392.
[16] LIU J Z, ZHANG W, RIZZONI G. Robust stability analysis of DC microgrids with constant power loads[J]. IEEE Transactions on Power Systems, 2018, 33(1):851-860.
[17] SIMFUKWE D D, PAL B C. Robust and low order power oscillation damper design through polynomial control[J]. IEEE Transactions on Power Systems, 2013, 28(2):1599-1608.
[18] YANG S, LIU F, ZHANG D, et al. Polynomial approximation of the small-signal stability region boundaries and its credible region in high-dimensional parameter space[J]. International Transactions on Electrical Energy Systems, 2013, 23(6):784-801.
[19] PAN Y F, MEI S W, LIU F, et al. Admissible region of large-scale uncertain wind generation considering small-signal stability of power systems[J]. IEEE Transactions on Sustainable Energy, 2016, 7(4):1611-1623.
[20] PAN Y F, LIU F, CHEN L J, et al. Towards the robust small-signal stability region of power systems under perturbations such as uncertain and volatile wind generation[J]. IEEE Transactions on Power Systems, 2018, 33(2):1790-1799.
[21] SHUAI Z K, PENG Y L, LIU X, et al. Parameter stability region analysis of islanded microgrid based on bifurcation theory[J]. IEEE Transactions on Smart Grid, 2019, 10(6):6580-6591.
[22] KUNDU S, DU W, NANDANOORI S P, et al. Identifying parameter space for robust stability in nonlinear networks:A microgrid application[C]//American Control Conference. Philadelphia, PA, USA:IEEE, 2019:3111-3116.
[23] PULCHERIO M C, ILLINDALA M S, YEDAVALLI R K. Robust stability region of a microgrid under parametric uncertainty using bialternate sum matrix approach[J]. IEEE Transactions on Power Systems, 2018, 33(5):5553-5562.
[24] PAI M A, VOURNAS C D, MICHEL A N, et al. Applications of interval matrices in power system stabilizer design[J]. International Journal of Electrical Power and Energy Systems, 1997, 19(3):179-184.
[25] 梅生伟. 现代鲁棒控制理论与应用[M]. 北京:清华大学出版社, 2003.MEI S W. Modern robust control theory and application[M]. Beijing:Tsinghua University Press, 2003. (in Chinese)
[26] KUZNETSOV Y A. Elements of applied bifurcation theory[M]. Wilmersdorf:Springer Science & Business Media, 2013.
[27] YEDAVALLI R K. Flight control application of new stability robustness bounds for linear uncertain systems[J]. Journal of Guidance, Control, and Dynamics, 1993, 16(6):1032-1037.
[28] FULLER A T. Conditions for a matrix to have only characteristic roots with negative real parts[J]. Journal of Mathematical Analysis and Applications, 1968, 23(1):71-98.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn