Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2021, Vol. 61 Issue (5): 446-456    DOI: 10.16511/j.cnki.qhdxxb.2021.21.018
  振荡稳定性 本期目录 | 过刊浏览 | 高级检索 |
考虑静止无功补偿器的直驱风电并网系统次同步振荡
黄碧月, 陈雅皓, 孙海顺, 毛俞杰, 韩应生, 王东泽
华中科技大学 强电磁工程与新技术国家重点实验室, 武汉 430074
Sub-synchronous oscillation in wind farm integrated power system considering static var compensator
HUANG Biyue, CHEN Yahao, SUN Haishun, MAO Yujie, HAN Yingsheng, WANG Dongze
State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
全文: PDF(3794 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 近年来频发的风电场次同步振荡事故极大影响了电网的安全稳定运行。考虑到无功补偿设备在风电场中的广泛应用,基于变流器控制的风电场可能会与其发生耦合作用导致系统失稳,故该文研究了考虑静止无功补偿器(SVC)的直驱风电并网系统次同步振荡。首先,基于SVC的时域仿真模型与频率扫描法,分析SVC在次同步频段的阻抗频率特性。进一步建立考虑SVC的风电并网系统的状态空间模型,计算系统特征模态和模态参与因子,分析SVC与直驱风电场间的次同步相互作用。分析结果表明,SVC在次同步频段将削弱风电并网系统阻尼,增加系统振荡风险;SVC与直驱风电场间存在明显的次同步相互作用,将导致系统发生次同步振荡,振荡特性与交流网络强度及风电场、静止无功补偿器的控制参数相关。时域仿真验证了该分析结果。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄碧月
陈雅皓
孙海顺
毛俞杰
韩应生
王东泽
关键词 次同步振荡(SSO)直驱风电场静止无功补偿器特征值分析频率扫描法    
Abstract:Recently, the long-standing sub-synchronous oscillation (SSO) in wind farms has greatly affected the operation of power systems. Large-scale wind farms comprise various types of wind turbine generators (WTGs) and dynamic reactive power compensation devices, further increasing the complication. Based on the practical phenomenon for further study, this paper focuses on the interactions among the direct-drive permanent synchronous generator (D-PMSG)-based wind farm, static var compensator (SVC), and connected grid. First, the impedance-frequency characteristics of SVC are studied based on the time-domain model of SVC and the frequency scanning method. Moreover, a state-space model of the D-PMSG-based wind farm equipped with an SVC is established to calculate the modes and their participation factors. The sub-synchronous interaction between the SVC and the D-PMSG-based wind farm will then be observed. Results indicate that the SVC may weaken the damping of the wind farm integrated power system and increase the risk of SSO. Furthermore, there is an obvious interaction between the SVC and the D-PMSG-based wind farm, which will lead to oscillation. System strength and control parameters of the SVC and D-PMSG-based wind farms can influence the oscillation characteristics. Theoretical results are verified by simulation.
Key wordssub-synchronous oscillation (SSO)    direct-drive permanent synchronous generator-based wind farm    static var compensator    eigenvalue analysis    frequency scanning method
收稿日期: 2020-12-14      出版日期: 2021-04-25
基金资助:国家重点研发计划项目(2017YFB0902000)
通讯作者: 孙海顺,教授,E-mail:haishunsun@hust.edu.cn      E-mail: haishunsun@hust.edu.cn
作者简介: 黄碧月(1994—),女,博士研究生。
引用本文:   
黄碧月, 陈雅皓, 孙海顺, 毛俞杰, 韩应生, 王东泽. 考虑静止无功补偿器的直驱风电并网系统次同步振荡[J]. 清华大学学报(自然科学版), 2021, 61(5): 446-456.
HUANG Biyue, CHEN Yahao, SUN Haishun, MAO Yujie, HAN Yingsheng, WANG Dongze. Sub-synchronous oscillation in wind farm integrated power system considering static var compensator. Journal of Tsinghua University(Science and Technology), 2021, 61(5): 446-456.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2021.21.018  或          http://jst.tsinghuajournals.com/CN/Y2021/V61/I5/446
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] LIU H K, XIE X R, GAO X D, et al. Stability analysis of SSR in multiple wind farms connected to series-compensated systems using impedance network model[J]. IEEE Transactions on Power Systems, 2018, 33(3):3118-3128.
[2] 谢小荣, 刘华坤, 贺静波, 等. 电力系统新型振荡问题浅析[J]. 中国电机工程学报, 2018, 38(10):2821-2828. XIE X R, LIU H K, HE J B, et al. On new oscillation issues of power systems[J]. Proceedings of the CSEE, 2018, 38(10):2821-2828. (in Chinese)
[3] HUANG B Y, SUN H S, LIU Y M, et al. Study on subsynchronous oscillation in D-PMSGs-based wind farm integrated to power system[J]. IET Renewable Power Generation, 2019, 13(1):16-26.
[4] 李光辉, 王伟胜, 刘纯, 等. 直驱风电场接入弱电网宽频带振荡机理与抑制方法(一):宽频带阻抗特性与振荡机理分析[J]. 中国电机工程学报, 2019, 39(22):6547-6562. LI G H, WANG W S, LIU C, et al. Mechanism analysis and suppression method of wideband oscillation of PMSG wind farms connected to weak grid (Part I):Analysis of wide band impedance characteristics and oscillation mechanism[J]. Proceedings of the CSEE, 2019, 39(22):6547-6562. (in Chinese)
[5] 张剑云. 哈密并网风电场次同步振荡的机理研究[J]. 中国电机工程学报, 2018, 38(18):5447-5460. ZHANG J Y. Research on the mechanism of subsynchronous oscillations of wind farms in Hami[J]. Proceedings of the CSEE, 2018, 38(18):5447-5460. (in Chinese)
[6] 葛维春. 电网电压稳定性与动态无功补偿[M]. 北京:科学出版社, 2018. GE W C. Voltage stability and dynamic reactive power compensation of power system[M]. Beijing:Science Press, 2018. (in Chinese)
[7] 程汉湘. 无功补偿理论及其应用[M]. 北京:机械工业出版社, 2016. CHENG H X. Theory and application of reactive power compensation[M]. Beijing:China Machine Press, 2016. (in Chinese)
[8] MATHUR R M, VARMA R K. Thyristor-based FACTS controllers for electrical transmission systems[M]. Plano, TX:Wiley-IEEE Press, 2002.
[9] SZECHTMAN M, F. LONG W, GOLE A, et al. Coordination of controls of multiple FACTS/HVDC links in the same system[R]. Paris:CIGRE, 1999.
[10] 刘洪涛, 徐政, 周长春. 静止无功补偿器对发电机组次同步振荡特性的影响[J]. 电网技术, 2003(1):1-4. LIU H T, XU Z, ZHOU C C. A study on subsynchronous oscillation of generating set connected to static var compensator[J]. Power System Technology, 2003(1):1-4. (in Chinese)
[11] MOHARANA A, VARMA R K, SEETHAPATHY R. SSR alleviation by STATCOM in induction-generator-based wind farm connected to series compensated line[C]//2014 IEEE PES T&D Conference and Expostion. Chicago:IEEE Press, 2014:1-1.
[12] PAMIANI M, IRAVANI M R. Voltage control stability and dynamic interaction phenomena of static var compensators[J]. IEEE Transactions on Power Systems, 1995, 10(3):1592-1597.
[13] PAMIANI M, IRAVANI M R. Computer analysis of small-signal stability of power systems including network dynamics[J]. IEE Proceedings, 1995, 142(6):613-617.
[14] 邓王博, 王海云, 常喜强, 等. 基于SVC的大规模双馈风电场次同步振荡研究[J]. 高压电器, 2019, 55(5):0214-0219. DENG W B, WANG H Y, CHANG X Q, et al. Analysis of subsynchronous oscillation of large scale doubly fed farm based on SVC[J]. High Voltage Apparatus, 2019, 55(5):0214-0219. (in Chinese)
[15] 张迅. 双馈风电场次同步振荡机理分析及基于SVC的抑制策略[D]. 天津:河北工业大学, 2017. ZHANG X. Analysis of sub-synchronous oscillation in DFIG plant and the suppression strategy based on SVC[D]. Tianjin:Hebei University of Technology, 2017. (in Chinese)
[16] 陈婧华. 双馈风电场经串补并网引起的次同步振荡分析与抑制[D]. 北京:华北电力大学, 2015. CHEN J H. Analysis and mitigation of subsynchronous oscillation caused by grid-integration of DFIG-based wind farm via series compensation[D]. Beijing:North China Electric Power University, 2015. (in Chinese)
[17] 刘宇明, 黄碧月, 孙海顺, 等. SVG与直驱风机间的次同步相互作用特性分析[J]. 电网技术, 2019, 43(6):2072-2079. LIU Y M, HUANG B Y, SUN H S, et al. Study on subsynchronous interaction between D-PMSG-based wind turbines and SVG[J]. Power System Technology, 2019, 43(6):2072-2079. (in Chinese)
[18] 孙贤大, 刘国辉, 吕孝国, 等. 基于SVG的次同步振荡抑制方法研究与应用[J]. 电力电子技术, 2020, 54(3):75-78. SUN X D, LIU G H, LÜ X G, et al. Research and application of subsynchronous oscillation suppression method based on SVG[J]. Power Electronics, 2020, 54(3):75-78. (in Chinese)
[19] 曹宇平. 风电次同步振荡机理研究[D]. 北京:华北电力大学, 2019. CAO Y P. Study on the mechanism of sub-synchronous oscillation caused by wind power[D]. Beijing:North China Electric Power University, 2019. (in Chinese)
[20] 张明远. 基于阻抗特性的直驱风电机组并网次同步振荡稳定判据及优化控制研究[D]. 北京:华北电力大学, 2019. ZHANG M Y. Study on subsynchronous oscillation stability criterion and control optimization for grid-connected full-converter wind turbines based on impedance model[D]. Beijing:North China Electric Power University, 2019. (in Chinese)
[21] 王雪薇, 谢欢, 刘青, 等. SVG对风电次同步振荡影响的研究[J]. 华北电力技术, 2017, 1(6):37-41. WANG X W, XIE H, LIU Q, et al. Research on the effects of SVG to wind subsynchronous oscillation[J]. North China Electric Power, 2017, 1(6):37-41. (in Chinese)
[22] SAHNI M, MUTHUMUNI D, BADRZADEH B, et al. Advanced screening techniques for sub-synchronous interaction in wind farms[C]//2012 IEEE PES T&D. Orlando, FL, USA:IEEE Press, 2012:1-9.
[23] BADRZADEH B, SAHNI M, MUTHUMUNI D, et al. Sub-synchronous interaction in wind power plants-part I:Study tools and techniques[C]//2012 IEEE Power and Energy Society General Meeting. San Diego, CA, USA:IEEE Press, 2012:1-9.
[24] REN W, LARSEN E. A refined frequency scan approach to sub-synchronous control interaction (SSCI) study of wind farms[J]. IEEE Transactions on Power Systems, 2016, 31(5):3904-3912.
[25] ALAWASA K M, MOHAMED Y A R I, XU W. Modeling, analysis, and suppression of the impact of full-scale wind-power converters on subsynchronous damping[J]. IEEE Systems Journal, 2013, 7(4):700-712.
[26] KNUPPEL T, NIELSEN J N, JENSEN K H, et al. Small-signal stability of wind power system with full-load converter interfaced wind turbines[J]. IET Renewable Power Generation, 2012, 6(2):79-91.
[27] 尹明, 李庚银, 张建成, 等. 直驱式永磁同步风力发电机组建模及其控制策略[J]. 电网技术, 2007, 31(15):61-65. YIN M, LI G Y, ZHANG J C, et al. Modeling and control strategies of directly driven wind turbine with permanent magnet synchronous generator[J]. Power System Technology, 2007, 31(15):61-65. (in Chinese)
[1] 杨智勇, 王子鸣, 叶珊珊, 李志强, 李卫京. 基于多尺度制动试验的制动噪声特性及仿真分析方法[J]. 清华大学学报(自然科学版), 2023, 63(10): 1626-1639.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn