Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2021, Vol. 61 Issue (8): 818-826    DOI: 10.16511/j.cnki.qhdxxb.2021.26.014
  数值模拟 本期目录 | 过刊浏览 | 高级检索 |
适用于非均质岩石破坏模拟的偏心四维弹簧模型
赵高峰, 乔磊, 张玉良, 孙建华, 陈华
天津大学 土木建筑工程学院, 水利工程仿真与安全国家重点实验室, 天津 300350
Eccentric four-dimensional lattice spring model for heterogeneous rock fracturing
ZHAO Gaofeng, QIAO Lei, ZHANG Yuliang, SUN Jianhua, CHEN Hua
State Key Laboratory of Hydraulic Engineering Simulation and Safety, School of Civil Engineering, Tianjin University, Tianjin 300350, China
全文: PDF(11696 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 超大规模非均质模型的生成速度制约着离散数值方法在复杂工程实践中的应用,为了解决超大规模模型非均质岩石的快速建立问题,该文基于四维弹簧模型(four-dimensional lattice spring model,4D-LSM),提出了偏心四维弹簧模型(eccentric 4D-LSM,ECC4D),开展了Poisson比、弹性模量和法向变形量的参数分析研究。通过弹性参数和破坏参数的研究论证了模型的可行性。结果表明:采用质心随机偏移的方式生成了非规则偏心四维模型ECC4D,通过特定算法可以轻松实现大规模计算,既能在一定程度上表征岩石材料的非规则性,也能快速获取任意几何模型。该方法在本地工作站上已经成功实现了超过1亿颗粒的大坝模型计算。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵高峰
乔磊
张玉良
孙建华
陈华
关键词 四维弹簧模型(4D-LSM)偏心高性能计算岩石破坏    
Abstract:The time needed to generate ultra-large heterogeneous models limits the application of discrete numerical methods in rock engineering. This paper presents an eccentric four-dimensional spring model (eccentric 4D-LSM, ECC4D) based on a 4D-LSM (four-dimensional lattice spring model) for parameter analyses of the effects of Poisson ratio, the elastic modulus and the ultimate normal deformation. The model feasibility is demonstrated through a study of the elastic parameters and failure parameters. The irregular, eccentric four-dimensional model ECC4D is generated using a random offset of the center of mass that can be used for large-scale calculations. ECC4D characterizes the irregularities of the rock materials while quickly generating an arbitrary geometry model. This method has been used to prepare a dam model with more than 100 million particles on a workstation.
Key wordsfour-dimensional lattice spring model (4D-LSM)    eccentric    high performance computing    rock fracturing
收稿日期: 2021-01-16      出版日期: 2021-07-14
引用本文:   
赵高峰, 乔磊, 张玉良, 孙建华, 陈华. 适用于非均质岩石破坏模拟的偏心四维弹簧模型[J]. 清华大学学报(自然科学版), 2021, 61(8): 818-826.
ZHAO Gaofeng, QIAO Lei, ZHANG Yuliang, SUN Jianhua, CHEN Hua. Eccentric four-dimensional lattice spring model for heterogeneous rock fracturing. Journal of Tsinghua University(Science and Technology), 2021, 61(8): 818-826.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2021.26.014  或          http://jst.tsinghuajournals.com/CN/Y2021/V61/I8/818
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] 赵尚毅, 郑颖人, 邓卫东. 用有限元强度折减法进行节理岩质边坡稳定性分析[J]. 岩石力学与工程学报, 2003, 22(2):254-260. ZHAO S Y, ZHENG Y R, DENG W D. Stability analysis on jointed rock slope by strength reduction FEM[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(2):254-260. (in Chinese)
[2] 李世海, 高波, 燕琳. 三峡永久船闸高边坡开挖三维离散元数值模拟[J]. 岩土力学, 2002, 23(3):272-277.LI S H, GAO B, YAN L. 3D simulation of the excavation of high steep slope of Three-Gorges permanent lock by distinct element method[J]. Rock and Soil Mechanics, 2002, 23(3):272-277. (in Chinese)
[3] LI X F, ZHANG Q B, LI H B, et al. Grain-based discrete element method (GB-DEM) modelling of multi-scale fracturing in rocks under dynamic loading[J]. Rock Mechanics and Rock Engineering, 2018, 51(12):3785-3817.
[4] 唐春安, 张永彬. 岩体间隔破裂机制及演化规律初探[J]. 岩石力学与工程学报, 2008, 27(7):1362-1369.TANG C A, ZHANG Y B. Discussion on mechanism and evolution laws of fracture spacing in rock mass[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(7):1362-1369. (in Chinese)
[5] 王卫华, 李夕兵. 离散元法及其在岩土工程中的应用综述[J]. 岩土工程技术, 2005, 19(4):177-181.WANG W H, LI X B. A review on fundamentals of distinct element method and its application in geotechnical engineering[J]. Geotechnical Engineering Technique. 2005, 19(4):177-181. (in Chinese)
[6] 郑颖人, 赵尚毅. 有限元强度折减法在土坡与岩坡中的应用[J]. 岩石力学与工程学报, 2004, 23(19):3381-3388.ZHENG Y R, ZHAO S Y. Application of strength reduction fem in soil and rock slope[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(19):3381-3388. (in Chinese)
[7] 焦玉勇, 张秀丽, 刘泉声, 等. 用非连续变形分析方法模拟岩石裂纹扩展[J]. 岩石力学与工程学报, 2007, 26(4):682-691.JIAO Y Y, ZHANG X L, LIU Q S, et al. Simulation of rock crack propagation using discontinuous deformation analysis method[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(4):682-691. (in Chinese)
[8] SHI G H, GOODMAN R E. Two dimensional discontinuous deformation analysis[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1985, 9(6):541-556.
[9] MA G W, AN X M, HE L. The numerical manifold method:A review[J]. International Journal of Computational Methods, 2010, 7(1):1-32.
[10] HRENNIKOFF A. Solution of problems of elasticity by the framework method[J]. Journal of Applied Mechanics, 1941(8):619-715.
[11] ZHAO G F, FANG J N, ZHAO J. A 3D distinct lattice spring model for elasticity and dynamic failure[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2011, 35(8):859-885.
[12] ZHAO G F, FANG J, ZHAO J N. A 3D distinct lattice spring model for elasticity and dynamic failure[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2011, 35(8):859-885.
[13] ZHAO G F, XIA K W. A study of mode-I self-similar dynamic crack propagation using a lattice spring model[J] Computers and Geotechnics, 2018, 96:215-225.
[14] WANG Y B, YANG R S. Study of the dynamic fracture characteristics of coal with a bedding structure based on the NSCB impact test[J]. Engineering Fracture Mechanics, 2017, 184:319-338.
[15] ZHAO Y X, ZHAO G F, JIANG Y D, et al. Effects of bedding on the dynamic indirect tensile strength of coal:Laboratory experiments and numerical simulation[J]. International Journal of Coal Geology, 2014, 132:81-93.
[16] ZHAO G F. Developing a four-dimensional lattice spring model for mechanical responses of solids[J]. Computation Methods in Applied Mechanics and Engineering, 2017, 315:881-905.
[17] 张奔, 赵高峰. 基于四维离散数值方法的岩石圆环试样动态破坏及耗能规律[J]. 土木与环境工程学报, 2019, 41(2):20-28.ZHANG B, ZHAO G F. Dynamic failure and energy dissipation of rock ring specimen based on 4D lattice spring model[J]. Journal of Civil and Environmental Engineering, 2019, 41(2):20-28. (in Chinese)
[18] HU X D, ZHAO G F, DENG X F, et al. Application of the four-dimensional lattice spring model for blasting wave propagation around the underground rock cavern[J] Tunnelling and Underground Space Technology, 2018, 82:135-147.
[19] 郑文刚, 刘凯欣. 离散元法工程计算软件的前后处理系统[J]. 计算机工程与科学, 2000, 22(6):14-15, 23.ZHENG W G, LIU K X. A preprocessing and postprocessing system for an engineering computation software of discrete element methods[J]. Computer Engineering and Science, 2000, 22(6):14-15, 23. (in Chinese)
[20] 赵高峰, 陈华. 基于阿里云的四维弹簧模型并行运算性能[J]. 土木与环境工程学报, 2019, 41(3):1-10.ZHAO G F, CHEN H. Performance of the parallel four-dimensional lattice spring model using Alibaba cloud[J]. Journal of Civil and Environmental Engineering, 2019, 41(3):1-10. (in Chinese)
[21] LIU C, POLLARD D D, GU K, et al. Mechanism of formation of wiggly compaction bands in porous sandstone:2 numerical simulation using discrete element method[J]. Journal of Geophysical Research:Solid Earth, 2015, 120(12):8153-8168.
[1] 王豪杰, 马子轩, 郑立言, 王元炜, 王飞, 翟季冬. 面向新一代神威超级计算机的高效内存分配器[J]. 清华大学学报(自然科学版), 2022, 62(5): 943-951.
[2] 徐学平, 韩勤锴, 褚福磊. 静载荷作用下偏心转子电磁振动特性[J]. 清华大学学报(自然科学版), 2016, 56(2): 176-184.
[3] 钱稼茹,张扬,张微敬. 双钢管高强混凝土短柱偏心受压性能试验[J]. 清华大学学报(自然科学版), 2015, 55(1): 1-7.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn