Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2021, Vol. 61 Issue (8): 833-841    DOI: 10.16511/j.cnki.qhdxxb.2021.26.019
  数值模拟 本期目录 | 过刊浏览 | 高级检索 |
基于有限元方法的水力压裂全三维全耦合数值模型及其物理实验验证
包劲青1, 杨晨旭1, 许建国2, 刘洪霞2, 王高成3, 张广明4, 程威4, 周德胜1
1. 西安石油大学 石油工程学院, 西安 710065;
2. 中国石油吉林油田分公司, 松原 138001;
3. 中国石油浙江油田分公司, 杭州 310023;
4. 中国石油勘探开发研究院, 北京 100083
A fully coupled and full 3D finite element model for hydraulic fracturing and its verification with physical experiments
BAO Jinqing1, YANG Chenxu1, XU Jianguo2, LIU Hongxia2, WANG Gaocheng3, ZHANG Guangming4, CHENG Wei4, ZHOU Desheng1
1. School of Petroleum Engineering, Xi'an Shiyou University, Xi'an 710065, China;
2. PetroChina Jilin Oilfield Company, Songyuan 138001, China;
3. PetroChina Zhejiang Oilfield Company, Hangzhou 310023, China;
4. PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China
全文: PDF(7253 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 以有限元方法为基础,采用2套方程描述水力压裂过程中岩石变形、裂缝扩展、裂缝内流体流动和滤失等关键力学问题。通过同步求解2套耦合有限元方程,建立水力压裂全三维全耦合数值模拟模型。通过数值模型和经典的水力压裂物理实验对比,在流体净压力、裂缝宽度、裂缝长度及裂缝扩展模态等方面数值实验结果和物理实验结果具有良好的一致性。模型得到经典物理实验验证,同时表明裂缝宽度即使在微米级别水力压裂理论中的立方体定律仍然适用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
包劲青
杨晨旭
许建国
刘洪霞
王高成
张广明
程威
周德胜
关键词 水力压裂全三维模型有限元实验验证    
Abstract:Two sets of equation are proposed to describe the key mechanic issues in hydraulic fracturing including rock deformation, fracture propagation, fluid flow and leak-off in fractures, where the finite element method is taken as the numerical foundation. The fully coupled and full 3-D numerical model for hydraulic fracturing is set up via solving the coupled two sets of equation simultaneously. Comparisons of the numerical simulations from the model with two classical physical experiments are made, and they have excellent agreements on net pressure, fracture widths, fracture lengths, fracture propagation modes, et al. The numerical model is verified by the experiments, and shows that the cubic law in the hydraulic fracturing theory is still applicable even when the fracture widths are at the order of microns.
Key wordshydraulic fracturing    full 3-D model    finite element method    experimental verification
收稿日期: 2021-01-02      出版日期: 2021-07-14
引用本文:   
包劲青, 杨晨旭, 许建国, 刘洪霞, 王高成, 张广明, 程威, 周德胜. 基于有限元方法的水力压裂全三维全耦合数值模型及其物理实验验证[J]. 清华大学学报(自然科学版), 2021, 61(8): 833-841.
BAO Jinqing, YANG Chenxu, XU Jianguo, LIU Hongxia, WANG Gaocheng, ZHANG Guangming, CHENG Wei, ZHOU Desheng. A fully coupled and full 3D finite element model for hydraulic fracturing and its verification with physical experiments. Journal of Tsinghua University(Science and Technology), 2021, 61(8): 833-841.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2021.26.019  或          http://jst.tsinghuajournals.com/CN/Y2021/V61/I8/833
  
  
  
  
  
  
  
[1] 姚军, 孙致学, 张凯, 等. 非常规油气藏开采中的工程科学问题及其发展趋势[J]. 石油科学通报, 2016, 1(1):128-142. YAO J, SUN Z X, ZHANG K, et al. Scientific engineering problems and development trends in unconventional oil and gas reservoirs[J]. Petroleum Science Bulletin, 2016, 1(1):128-142. (in Chinese)
[2] ADACHI J, SIEBRITS E, PEIRCE A, et al. Computer simulation of hydraulic fractures[J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(5):739-757.
[3] 庄茁, 柳占立, 王涛, 等. 页岩水力压裂的关键力学问题[J]. 科学通报, 2016, 61(1):72-81. ZHANG Z, LIU Z L, WANG T, et al. The key mechanical problems on hydraulic fracture in shale[J]. Chinese Science Bulletin, 2016, 61(1):72-81. (in Chinese)
[4] KHRISTIANOVIC S A, ZHELTOV Y P. Formation of vertical fractures by means of highly viscous liquid[C]//Proceedings of the Forth World Petroleum Congress. Rome, Italy:WPC, 1955:579-586.
[5] GEERTSMA J, DE KLERK F. A rapid method of predicting width and extent of hydraulically induced fractures[J]. Journal of Petroleum Technology, 1969, 21(12):1571-1581.
[6] PERKINS T K, KERN L R. Widths of hydraulic fractures[J]. Journal of Petroleum Technology, 1961, 14(9):937-949.
[7] NORDGREN R P. Propagation of a vertical hydraulic fracture[J]. Society of Petroleum Engineer Journal, 1970, 12(4):306-314.
[8] SIMONSON E R, ABOU-SAYED A S, CLIFTON R J. Containment of massive hydraulic fractures[J]. Society of Petroleum Engineers Journal, 1978, 18(1):27-32.
[9] SPENCE D A, SHARP P. Self-similar solutions for elastohydrodynamic cavity flow[J]. Proceedings of the Royal Society of London, 1985, 400(1819):289-313.
[10] BUNGER A P, DETOURNAY E, GARAGASH D I. Toughness-dominated hydraulic fracture with leak-off[J]. International Journal of Fracture, 2005, 134(2):175-190.
[11] SHEL E V, PADERIN G V. Analytical solution of the pseudo-3D model for hydraulic fracturing in a storage-dominated regime[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 114:92-100.
[12] PECHER R. Boundary element simulation of petroleum reservoirs with hydraulically fractured wells[D]. Calgary:University of Calgary, 1999.
[13] ZHOU D S, ZHENG P, PENG J, et al. Induced stress and interaction of fractures during hydraulic fracturing in shale formation[J]. Journal of Energy Resources Technology, 2015, 137(6):062902.
[14] ZHOU D S, ZHENG P, HE P, et al. Hydraulic fracture propagation direction during volume fracturing in unconventional reservoirs[J]. Journal of Petroleum Science and Engineering, 2016, 141:82-89.
[15] SKOPINTSEV A M, DONTSOV E V, KOVTUNENKO P V, et al. The coupling of an enhanced pseudo-3D model for hydraulic fracturing with a proppant transport model[J]. Engineering Fracture Mechanics, 2020, 236:107177.
[16] DONTSOV E V, PEIRCE A P. An enhanced pseudo-3D model for hydraulic fracturing accounting for viscous height growth, non-local elasticity, and lateral toughness[J]. Engineering Fracture Mechanics, 2015, 142:116-139.
[17] DONTSOV E V, PEIRCE A P. Comparison of toughness propagation criteria for blade-like and pseudo-3D hydraulic fractures[J]. Engineering Fracture Mechanics, 2016, 160:238-247.
[18] CHEN M, ZHANG S C, LI S H, et al. An explicit algorithm for modeling planar 3D hydraulic fracture growth based on a super-time-stepping method[J]. International Journal of Solids and Structures, 2020, 191-192:370-389.
[19] ADACHI J I, DETOURNAY E, PEIRCE A P. Analysis of the classical pseudo-3D model for hydraulic fracture with equilibrium height growth across stress barriers[J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(4):625-639.
[20] 侯冰, 陈勉, 张保卫, 等. 裂缝性页岩储层多级水力裂缝扩展规律研究[J]. 岩土工程学报, 2015, 37(6):1041-1046. HOU B, CHEN M, ZHANG B W, et al. Propagation of multiple hydraulic fractures in fractured shale reservoir[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(6):1041-1046. (in Chinese)
[21] CHEN Z R. Finite element modelling of viscosity-dominated hydraulic fractures[J]. Journal of Petroleum Science and Engineering, 2012, 88-89:136-144.
[22] SALIMZADEH S, KHALILI N. A three-phase XFEM model for hydraulic fracturing with cohesive crack propagation[J]. Computers and Geotechnics, 2015, 69:82-92.
[23] 薛炳, 张广明, 吴恒安, 等. 油井水力压裂的三维数值模拟[J]. 中国科学技术大学学报, 2008, 38(11):1322-1325, 1347. XUE B, ZHANG G M, WU H A, et al. Three-dimensional numerical simulation of hydraulic fracture in oil wells[J]. Journal of University of Science and Technology of China, 2008, 38(11):1322-1325, 1347. (in Chinese)
[24] 潘林华, 张士诚, 张劲, 等. 基于流-固耦合的压裂裂缝形态影响因素分析[J]. 西安石油大学学报(自然科学版), 2012, 27(3):76-80. PAN L H, ZHANG S C, ZHANG J, et al. Analysis of factors influencing the shape of hydraulic fracturing fracture based on fluid-solid coupling[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2012, 27(3):76-80. (in Chinese)
[25] 王涛, 高越, 柳占立, 等. 基于扩展有限元法的水力压裂大物模实验的数值模拟[J]. 清华大学学报(自然科学版), 2014, 54(10):1304-1309. WANG T, GAO Y, LIU Z L, et al. Numerical simulations of hydraulic fracturing in large objects using an extended finite element method[J]. Journal of Tsinghua University (Science & Technology), 2014, 54(10):1304-1309. (in Chinese)
[26] 曾青冬, 姚军. 水平井多裂缝同步扩展数值模拟[J]. 石油学报, 2015, 36(12):1571-1579. ZENG Q D, YAO J. Numerical simulation of multiple fractures simultaneous propagation in horizontal wells[J]. Acta Petrolei Sinica, 2015, 36(12):1571-1579. (in Chinese)
[27] GUPTA P, DUARTE C A. Coupled formulation and algorithms for the simulation of non-planar three-dimensional hydraulic fractures using the generalized finite element method[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2016, 40(10):1402-1437.
[28] LECAMPION B, DESROCHES J. Simultaneous initiation and growth of multiple radial hydraulic fractures from a horizontal wellbore[J]. Journal of the Mechanics and Physics of Solids, 2015, 82:235-258.
[29] DE PATER C J, WEIJERS L, SAVIC M, et al. Experimental study of nonlinear effects in hydraulic fracture propagation[J]. SPE Production & Operations, 1994, 9(4):239-246.
[30] SETTGAST R R, FU P C, WALSH S D C, et al. A fully coupled method for massively parallel simulation of hydraulically driven fractures in 3-dimensions[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2017, 41(5):627-653.
[31] RUBIN M B. Experimental study of hydraulic fracturing in an impermeable material[J]. Journal of Energy Resources Technology, 1983, 105(2):116-124.
[32] BATCHELOR G K. An introduction to fluid dynamics[M]. Cambridge:Cambridge University Press, 1967.
[33] CARTER R D. Optimum fluid characteristics for fracture extension[M]. Tulsa:American Petroleum Institute, 1957.
[34] BAO J Q, FATHI E, AMERI S. A coupled finite element method for the numerical simulation of hydraulic fracturing with a condensation technique[J]. Engineering Fracture Mechanics, 2014, 131:269-281.
[35] BAO J Q, FATHI E, AMERI S. Uniform investigation of hydraulic fracturing propagation regimes in the plane strain model[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2015, 39(5):507-523.
[36] LECAMPION B, DESROCHES J, JEFFREY R G, et al. Experiments versus theory for the initiation and propagation of radial hydraulic fractures in low-permeability materials[J]. Journal of Geophysical Research:Solid Earth, 2017, 122(2):1239-1263.
[1] 周伟, 李敏, 丘铭军, 张西龙, 柳江, 张洪波. 基于改进遗传算法的车身板件厚度优化[J]. 清华大学学报(自然科学版), 2022, 62(3): 523-532.
[2] 张红卫, 桂良进, 范子杰. 焊接热源参数优化方法研究及验证[J]. 清华大学学报(自然科学版), 2022, 62(2): 367-373.
[3] 张宁远, 罗斌, 沈宇洲, 姜鹏, 李辉, 李庆伟. FAST索网大天顶角工况下结构响应分析[J]. 清华大学学报(自然科学版), 2022, 62(11): 1809-1815,1822.
[4] 黄伟灿, 蒋晓华, 薛芃, 李欣阳, 沈稚栋, 孙宇光. 超导直流能源管道载流导体设计[J]. 清华大学学报(自然科学版), 2022, 62(10): 1715-1720.
[5] 李彦霖, 秦本科, 薄涵亮. 电容式棒位测量传感器的解析模型及验证[J]. 清华大学学报(自然科学版), 2022, 62(10): 1636-1644.
[6] 张红卫, 桂良进, 范子杰. 驱动桥桥壳焊接残余应力仿真及试验验证[J]. 清华大学学报(自然科学版), 2022, 62(1): 116-124.
[7] 陈志恒, 荣冠, 谭尧升, 张子阳, 王克祥, 罗贯军. 白鹤滩大坝三维渗流场仿真与渗控效果评价[J]. 清华大学学报(自然科学版), 2021, 61(7): 705-713,723.
[8] 许伟, 赵争鸣, 姜齐荣. 高频变压器分布电容计算方法[J]. 清华大学学报(自然科学版), 2021, 61(10): 1088-1096.
[9] 徐文雪,吕振华. 双气室式液阻减振器阻尼特性的三维流固耦合有限元仿真分析[J]. 清华大学学报(自然科学版), 2021, 61(1): 11-20.
[10] 柴士阳, 刘奇磊, 梁馨元, 张颂, 郭彦锁, 徐承秋, 张磊, 都健, 袁志宏. 计算机辅助高纯2-巯基苯并噻唑结晶溶剂设计方法[J]. 清华大学学报(自然科学版), 2020, 60(8): 701-706.
[11] 王波, 何洋扬, 聂冰冰, 许述财, 张金换. 底部爆炸条件下车内乘员损伤风险仿真评估[J]. 清华大学学报(自然科学版), 2020, 60(11): 902-909.
[12] 魏鲲鹏, 戴兴建, 邵宗义. 碳纤维波纹管弯曲刚度的测量及有限元分析[J]. 清华大学学报(自然科学版), 2019, 59(7): 587-592.
[13] 桂良进, 张晓前, 周驰, 范子杰. 各向异性高强钢成形极限曲线有限元预测[J]. 清华大学学报(自然科学版), 2019, 59(1): 66-72.
[14] 吕江伟, 周凯. 高力密度直线开关磁阻电机的最佳极宽比[J]. 清华大学学报(自然科学版), 2018, 58(5): 469-476.
[15] 董智超, 王霄锋, 楼位鹏, 黄元毅, 钟明. 微型客车后驱动桥多轴耦合疲劳试验仿真[J]. 清华大学学报(自然科学版), 2018, 58(2): 212-216.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn