Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2021, Vol. 61 Issue (8): 842-852    DOI: 10.16511/j.cnki.qhdxxb.2021.26.015
  工程应用 本期目录 | 过刊浏览 | 高级检索 |
中国锦屏地下实验室开挖隧洞灾变特征与长期原位力学响应分析
李邵军1, 郑民总1,2, 邱士利1, 姚志宾3, 肖亚勋1, 周济芳4, 潘鹏志1
1. 中国科学院武汉岩土力学研究所 岩土力学与工程国家重点实验室, 武汉 430071;
2. 中国科学院大学, 北京 100049;
3. 东北大学 深部金属矿山安全开采教育部重点实验室, 沈阳 110819;
4. 雅砻江流域水电开发有限公司, 成都 610051
Characteristics of excavation disasters and long-term in-situ mechanical behavior of the tunnels in the China Jinping Underground Laboratory
LI Shaojun1, ZHENG Minzong1,2, QIU Shili1, YAO Zhibin3, XIAO Yaxun1, ZHOU Jifang4, PAN Pengzhi1
1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China;
3. Key Laboratory of Ministry of Education for Safe Mining of Deep Metal Mines, Northeastern University, Shenyang 110819, China;
4. Yalong River Hydropower Development Co., Ltd., Chengdu 610051, China
全文: PDF(17479 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 深埋高应力隧洞建设过程中潜在岩爆、片帮、塌方等工程灾害。中国锦屏地下实验室二期(CJPL-II)是目前世界上埋深最大的实验室(2 400 m),在隧洞群建设过程中开展了变形、应力、微震等系统的综合原位监测和力学响应数值模拟,该文系统分析了隧洞灾变特征与长期原位力学响应,研究结果表明:隧洞围岩变形以1#实验室和4#实验室北侧边墙较大,最大变形达83.7 mm,岩体锚杆应力最大为530 MPa,开挖完成后3个月,岩体变形趋于稳定;基于岩体声波和钻孔摄像揭示的围岩松弛深度范围总体约为0.8~3.5 m;围岩随开挖内部破裂演化,存在分区现象,强度较高且完整的岩体,破裂区范围较小,强度较低且完整性较差的岩体,破裂区范围较大;各实验室开挖时的微震在完整岩体隧洞和断层附近区域更为活跃,各隧洞强弱顺序依次为:8#、7#、4#、3#、5#、6#、1#、2#、9#,已完成开挖后的各洞室微震活动性逐渐趋于平静;基于CASRock软件分析表明:实验室开挖卸荷后南侧拱肩和边墙应力高、松弛深度较大,是高风险区。研究成果为实验室灾害预警、稳定性评估、动态设计及长期安全运营提供了直接支撑,也将为相似地质条件的高应力深埋隧洞安全建设提供借鉴。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李邵军
郑民总
邱士利
姚志宾
肖亚勋
周济芳
潘鹏志
关键词 锦屏地下实验室深埋隧洞原位力学响应长期监测CASRock    
Abstract:The construction of deep high-stress tunnels can face various problems such as rockbursts, rib spalling, and tunnel collapse. The 2 400 m deep China Jinping Underground Laboratory (CJPL-II) is currently the world's largest buried laboratory. The construction of this group of tunnels included field monitoring and numerical analyses of the mechanical response of the rock around the tunnels, such as the deformation, stresses and microseismic events. The complex geological conditions are analyzed to predict tunnel disaster characteristics and the long-term in-situ mechanical response of the rock. The results show that the surrounding rock mass deformation is larger on the north side walls of laboratory 1# and laboratory 4# with a maximum deformation of 83.7 mm. The maximum rock bolt stress is 530 MPa. The rock mass deformation tended to become stable about three months after completion of the excavation. The excavation damage zone revealed by elastic waves and a borehole camera is generally 0.8~3.5 m. The results also show that the internal fractures in the surrounding rock mass evolve with the excavation with zonal disintegration. The high strength, good integrity rock has a small fracture zone while the low strength, poor integrity rock has a large fracture zone. The results also show that there is more micro-seismic activity in the completed rock mass tunnel and the area around the fault. The intensity of the microseismic activity in each laboratory tunnel during excavation was highest for 8# and decreased to 8#, 7#, 4#, 3#, 5#, 6#, 1#, 2# and 9# as the lowest. After excavation, the microseismic activity in each tunnel gradually decreased. The CASRock software analysis showed the high stresses and large relaxation depth of the southern arch shoulder and sidewall after excavation and unloading that created high-risk areas. The results provide direct support for disaster warning system development, stability assessments, dynamic designs, and long-term safe tunnel operation for safe construction of high-stress, deep tunnels with similar geological conditions.
Key wordsChina Jinping Underground Laboratory    deep buried tunnels    in-situ mechanical behavior    long term monitoring    CASRock
收稿日期: 2021-01-19      出版日期: 2021-07-14
引用本文:   
李邵军, 郑民总, 邱士利, 姚志宾, 肖亚勋, 周济芳, 潘鹏志. 中国锦屏地下实验室开挖隧洞灾变特征与长期原位力学响应分析[J]. 清华大学学报(自然科学版), 2021, 61(8): 842-852.
LI Shaojun, ZHENG Minzong, QIU Shili, YAO Zhibin, XIAO Yaxun, ZHOU Jifang, PAN Pengzhi. Characteristics of excavation disasters and long-term in-situ mechanical behavior of the tunnels in the China Jinping Underground Laboratory. Journal of Tsinghua University(Science and Technology), 2021, 61(8): 842-852.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2021.26.015  或          http://jst.tsinghuajournals.com/CN/Y2021/V61/I8/842
  
  
  
  
  
  
  
  
  
  
  
  
[1] BETTINI A. Underground laboratories[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 626-627(S1):S64-S68.
[2] COCCIA E. Underground laboratories in Europe[J]. Journal of Physics:Conference Series, 2006, 39:134.
[3] 程建平, 吴世勇, 岳骞, 等. 国际地下实验室发展综述[J]. 物理, 2011, 40(3):149-154.CHENG J P, WU S Y, YUE Q, et al. A review of international underground laboratory developments[J]. Physics, 2011, 40(3):149-154. (in Chinese)
[4] ZHENG M Z, LI S, ZHAO H, et al. Probabilistic analysis of tunnel displacements based on correlative recognition of rock mass parameters[J]. Geoscience Frontiers, 2021, 12(4):101136.
[5] 钟山, 江权, 冯夏庭, 等. 锦屏深部地下实验室初始地应力测量实践[J]. 岩土力学, 2018, 39(1):356-366.ZHONG S, JIANG Q, FENG X T, et al. A case of in-situ stress measurement in Chinese Jinping Underground Laboratory[J]. Rock and Soil Mechanics, 2018, 39(1):356-366. (in Chinese)
[6] ZHENG M Z, LI S J, YAO Z, et al. Core discing characteristics and mitigation approach by a novel developed drill bit in deep rocks[J]. Journal of Central South University, 2020, 27(10):2822-2833.
[7] 冯夏庭, 肖亚勋, 丰光亮, 等. 岩爆孕育过程研究[J]. 岩石力学与工程学报, 2019, 38(4):649-673.FENG X T, XIAO Y X, FENG G L, et al. Study on the development process of rockbursts[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(4):649-673. (in Chinese)
[8] 冯夏庭, 陈炳瑞, 张传庆, 等. 岩爆孕育过程的机制、预警与动态调控[M]. 北京:科学出版社, 2013.FENG X T, CHENG B R, ZHANG C Q, et al. Mechanism, warning and dynamic control of rockburst development processes[M]. Beijing:Science Press, 2013. (in Chinese)
[9] 黄晶柱, 冯夏庭, 周扬一, 等. 深埋硬岩隧洞复杂岩性挤压破碎带塌方过程及机制分析——以锦屏地下实验室为例[J]. 岩石力学与工程学报, 2017, 36(8):1867-1879.HUANG J Z, FENG X T, ZHOU Y Y, et al. Analysis of collapse process and mechanism of complex lithologic compressive rupture zone in deep buried hard rock tunnel:A case study of Jinping Underground Laboratory[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(8):1867-1879. (in Chinese)
[10] FENG X T, XU H, QIU S L, et al. In situ observation of rock spalling in the deep tunnels of the China Jinping Underground Laboratory (2400 m depth)[J]. Rock Mechanics and Rock Engineering, 2018, 51(4):1193-1213.
[11] LI S J, FENG X T, WANG C Y, et al. ISRM suggested method for rock fractures observations using a borehole digital optical televiewer[J]. Rock Mechanics and Rock Engineering, 2013, 46(3):635-644.
[12] LI S J, FENG X T, LI Z H, et al. In situ monitoring of rockburst nucleation and evolution in the deeply buried tunnels of Jinping II Hydropower Station[J]. Engineering Geology, 2012, 137-138:85-96.
[13] LI S J, FENG X T, LI Z H, et al. Evolution of fractures in the excavation damaged zone of a deeply buried tunnel during TBM construction[J]. International Journal of Rock Mechanics and Mining Sciences, 2012, 55:125-138.
[14] 冯夏庭, 吴世勇, 李邵军, 等. 中国锦屏地下实验室二期工程安全原位综合监测与分析[J]. 岩石力学与工程学报, 2016, 35(4):649-657.FENG X T, WU S Y, LI S J, et al. Comprehensive field monitoring of deep tunnels at Jinping Underground Laboratory (CJPL-II) in China[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(4):649-657. (in Chinese)
[15] FENG X T, YAO Z B, LI S J, et al. In situ observation of hard surrounding rock displacement at 2400 m deep tunnels[J]. Rock Mechanics and Rock Engineering, 2018, 51(3):873-892.
[16] 戴峰, 李彪, 徐奴文, 等. 猴子岩水电站深埋地下厂房开挖损伤区特征分析[J]. 岩石力学与工程学报, 2015,34(4):735-746. DAI F, LI B, XU N W, et al. Characteristics of damaged zones due to excavation in deep underground powerhouse at Houziyan Hydropower Station[J].Chinese Journal of Rock Mechanics and Engineering, 2015, 34(4):735-746. (in Chinese)
[17] FENG X T, GUO H S, YANG C X, et al. In situ observation and evaluation of zonal disintegration affected by existing fractures in deep hard rock tunneling[J]. Engineering Geology, 2018, 242:1-11.
[18] FENG X T, CHEN B R, LI S J, et al. Studies on the evolution process of rockbursts in deep tunnels[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2012, 4(4):289-295.
[19] CHEN B R, FENG X T, LI Q P, et al. Rock burst intensity classification based on the radiated energy with damage intensity at Jinping II Hydropower Station, China[J]. Rock Mechanics and Rock Engineering, 2015, 48(1):289-303.
[20] FENG G L, FENG X T, CHEN B R, et al. Microseismic sequences associated with rockbursts in the tunnels of the Jinping II Hydropower Station[J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 80:89-100.
[21] XIAO Y X, FENG X T, FENG G L, et al. Mechanism of evolution of stress-structure controlled collapse of surrounding rock in caverns:A case study from the Baihetan Hydropower Station in China[J]. Tunnelling and Underground Space Technology, 2016, 51:56-67.
[22] PAN P Z, FENG X T, HUDSON J A. Study of failure and scale effects in rocks under uniaxial compression using 3D cellular automata[J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(4):674-685.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn