Analysis of public opinion and disaster loss estimates from typhoons based on Microblog data
LI Shaopan1, ZHAO Fei2, ZHOU Yiqi1, TIAN Xiangliang3, HUANG Hong1
1. Institute of Public Safety Research, Department of Engineering Physics, Tsinghua University, Beijing 100084, China; 2. National Disaster Reduction Center of China, Beijing 100124, China; 3. Key Laboratory of Mining Goaf Disaster Prevention and Control of Ministry of Emergency Management, China Academy of Safety Science & Technology, Beijing 100012, China
Abstract:This study searched Microblog data related to Typhoon "Mangkhut" in 2018 and "Lekima" in 2019 and then used the Bayesian sentiment analysis model to analyze the public opinions related to these typhoons. The results show two different typhoon disaster public opinion temporal and spatial evolution laws and an emotional evolution law. Then, the urban typhoon disaster loss was estimated for coastal and inland cities based on the temporal and spatial evolution and emotional evolution laws. The data includes the city's geographic location, economy, population and typhoon disaster damage as well as sentiments. The disaster damage assessment model is consistent with the disaster assessment. The research results and methods provide references for disaster research and disaster relief demand analyses and guidelines for supply allocation in cities during initial emergency responses during typhoons.
李绍攀, 赵飞, 周义棋, 田向亮, 黄弘. 基于微博数据的台风灾害舆情分析与灾害损失估计[J]. 清华大学学报(自然科学版), 2022, 62(1): 43-51.
LI Shaopan, ZHAO Fei, ZHOU Yiqi, TIAN Xiangliang, HUANG Hong. Analysis of public opinion and disaster loss estimates from typhoons based on Microblog data. Journal of Tsinghua University(Science and Technology), 2022, 62(1): 43-51.
[1] 康斌. 我国台风灾害统计分析[J]. 中国防汛抗旱, 2016, 26(2):36-40. KANG B. Statistical analysis of typhoon disasters in China[J]. Flood Control and Drought Relief in China, 2016, 26(2):36-40. (in Chinese) [2] 中国气象局. 中国气象灾害年鉴2019[M]. 北京:气象出版社, 2019. China Meteorological Administration. China meteorological disaster yearbook 2019[M]. Beijing:Meteorological Press, 2019. (in Chinese) [3] 中国气象局. 中国气象灾害年鉴2018[M]. 北京:气象出版社, 2018. China Meteorological Administration. China meteorological disaster yearbook 2018[M]. Beijing:Meteorological Press, 2018. (in Chinese) [4] 中国气象局. 中国气象灾害年鉴2017[M]. 北京:气象出版社, 2017. China Meteorological Administration. China meteorological disaster yearbook 2017[M]. Beijing:Meteorological Press, 2017. (in Chinese) [5] 中国气象局. 中国气象灾害年鉴2016[M]. 北京:气象出版社, 2016. China Meteorological Administration. China meteorological disaster yearbook 2016[M]. Beijing:Meteorological Press, 2016. (in Chinese) [6] CHAE J, THOM D, JANG Y, et al. Special section on visual analytics:Public behavior response analysis in disaster events utilizing visual analytics of microblog data[J]. Computers & Graphics, 2014, 38(1):51-60. [7] 陈梓, 高涛, 罗年学, 等.反映自然灾害时空分布的社交媒体有效性探讨[J].测绘科学, 2017, 42(8):44-48. CHEN Z, GAO T, LUO N X, et al. Social media effectiveness to reflect the spatial and temporal distribution of natural disasters[J]. Science of Surveying and Mapping, 2017, 42(8):44-48. (in Chinese) [8] 白华, 林勋国.基于中文短文本分类的社交媒体灾害事件检测系统研究[J].灾害学, 2016, 31(2):19-23. BAI H, LIN X G. Social media disaster event detection system based on Chinese short text classification[J]. Journal of Catastrophology, 2016, 31(2):19-23. (in Chinese) [9] 彭敏, 官宸宇, 朱佳晖, 等.面向社交媒体文本的话题检测与追踪技术研究综述[J] 武汉大学学报·理学版, 2016, 62(3):197-217. PENG M, GUAN C Y, ZHU J H, et al. A survey of topic detection and tracking technology for social media texts[J]. Journal of Wuhan University (Science Edition), 2016, 62(3):197-217. (in Chinese) [10] MARK A S, ALISA E P, et al. Making the most of a brave new world:Opportunities and considerations for using Twitter as a public health monitoring tool[J]. Preventive Medicine, 2014, 63(6):109-111. [11] 刘宏波, 翟国方.基于社交媒体信息不同灾害的社会响应特征比较研究[J].灾害学, 2017, 32(1):187-193. LIU H B, ZHAI G F. A comparative study of the social response characteristics of different disasters based on social media information[J]. Journal of Catastrophology, 2017, 32(1):187-193. (in Chinese) [12] 刘超然.在线新闻网民评论情感倾向性分析及可视化研究[D]. 哈尔滨:哈尔滨工业大学, 2018. LIU C R. Online news netizens comment on emotional orientation analysis and visualization[D]. Harbin:Harbin Institute of Technology, 2018. (in Chinese) [13] 仇培元, 陆锋, 张恒才, 等. 蕴含地理事件微博客消息的自动识别方法[J].地球信息科学学报, 2016, 18(7):886-893. QIU P Y, LU F, ZHANG H C, at al. Containing automatic recognition methods for geo-event micro-blog messages[J]. Journal of Geo-information Science, 2016, 18(7):886-893. (in Chinese) [14] 杨腾飞, 解吉波, 李振宇, 等. 微博中蕴含台风灾害损失信息识别和分类方法[J]. 地理信息科学学报, 2018, 20(7):906-917. YANG T F, JIE J B, LI Z Y, et al. Identification and classification of typhoon disaster loss information in Weibo[J]. Journal of Earth Sciences, 2018, 20(7):906-917. (in Chinese) [15] SAKAKI T, OKAZAKI M, MATSUO Y. Earthquake shakes Twitter users:Real-time event detection by social sensors[C]//Proceedings of the 19th International Conference on World Wide Web. New York, USA:ACM, 2010:851-860. [16] KUMAR M A, GOPAL M. A comparison study on multiple binary-class SVM methods for unilabel text categorization[J]. Pattern Recognition Letters, 2010, 31(11):1437-1444. [17] ALFARRARJEH A, AGRAWAL S, KIM S H, et al. Geo-spatial multimedia sentiment in disasters[C]//The 4th IEEE International Conference on Data Science and Advanced Analytics 2017. Tokyo, Japan:IEEE, 2017. [18] XU B, GUO X, YE Y, et al. An improved random forest classifier for text categorization[J]. Journal of Computers, 2012, 7(12):2913-2920. [19] CHIO S, BAE B. The real-time monitoring system of social big data for disaster management[M]. Berlin:Springer, 2015. [20] PETER D.T. Learning algorithms for keyphrase extraction[J]. Information Retrieval, 2000, 2(4):303-336. [21] YANG T, XIE J, LI G. A social media based dataset of typhoon disasters[DB]. Science Data Bank, 2017, DOI:10.11922/sciencedb.547. [22] SINGH J, SINGH G, SINGH R, et al. Optimizing accuracy of sentiment analysis using deep learning based classification technique[C]//International Conference on Recent Developments in Science, Engineering and Technology. Singapore:Springer, 2017:516-532. [23] PAOLA V, GIOVANNI S, ALBERTO E. et al. Twitter mining for fine-grained syndromic surveillance[J]. Artificial Intelligence in Medicine, 2014, 61(3):153-163. [24] KRYVASHEYEU Y, CHEN H H, OBRADOVICH N, et al. Rapid assessment of disaster damage using social media activity[J]. Science Advances, 2016, 2(3):e1500779. [25] 李志娟. 台风灾害损失预测方法研究[D].广州:华南理工大学, 2016. LI Z J. Research on Forecast Method of Typhoon Disaster Loss[D]. Guangzhou:South China University of Technology, 2016. (in Chinese) [26] VEGA S H, ELHORST J P. The SLX model[J]. Journal of Regional Science, 2015, 55(3):339-363. [27] WU D S, CUI Y W. Disaster early warning and damage assessment analysis using social media data and geo-location information[J]. Decision Support Systems, 2018(111):48-59. [28] MEIJERS E, BURGER M. Stretching the concept of borrowed size[J]. Urban studies, 2017, 54(1):269-291.