Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2022, Vol. 62 Issue (10): 1559-1570    DOI: 10.16511/j.cnki.qhdxxb.2022.21.021
  防灾减灾 本期目录 | 过刊浏览 | 高级检索 |
化工多米诺事故中物理效应间的耦合作用
沈锴欣, 贺治超, 翁文国
清华大学 工程物理系, 公共安全研究院, 北京 100084
Synergistic physical effects of domino accidents in the chemical industry
SHEN Kaixin, HE Zhichao, WENG Wenguo
Institute of Public Safety Research, Department of Engineering Physics, Tsinghua University, Beijing 100084, China
全文: PDF(12434 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 为了完善多米诺事故风险定量评估方法,该文针对现有多米诺事故研究中的不同类型事故物理效应(热辐射、泄漏的有毒气体)及环境风速风向间的耦合作用展开研究,通过经验模型分析耦合作用机制,对实验装置模型采用计算流体动力学(CFD)软件数值模拟火灾与有毒气体泄漏事故的耦合情形。模拟结果表明,物理效应间的耦合作用会放大事故后果严重程度。以某危险品库发生过的多米诺事故为案例进行风险定量评估,发现物理效应耦合作用会显著放大个人风险,而根据具体情况不同,环境风速风向既可能放大个人风险,也可能对风险起到抑制作用。结果表明,在多米诺事故风险定量评估过程中应当考虑事故物理效应间的耦合作用。该研究可为提升多米诺事故风险定量评估方法的准确性提供重要参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
沈锴欣
贺治超
翁文国
关键词 多米诺事故风险定量评估物理效应耦合作用数值模拟    
Abstract:To enhance the quantitative risk assessment method for domino accidents,this study investigated the synergistic impact between the wind and the physical effects (thermal radiation,toxic gas leakage) of different types of accidents.The mechanism of the synergistic effect was analyzed using empirical models.The synergistic situation between fire and toxic gas leakage was simulated using an experiment device model in computational fluid dynamics (CFD) software.The simulation results revealed that the synergistic effect could amplify the accident consequence severity.A hazardous chemical warehouse was taken as a case study for quantitative risk assessment.It was found that the synergistic effect would significantly amplify the individual risk,while the wind could either amplify or inhibit the risk,depending on the specific situation.The result indicates that the synergistic physical effects should be considered in the quantitative risk assessment of domino accidents.This research can serve as an important reference for improving the accuracy of the quantitative risk assessment for domino accidents.
Key wordsdomino accident    quantitative risk assessment    physical effects    synergistic effect    numerical simulation
收稿日期: 2022-02-23      出版日期: 2022-09-03
基金资助:翁文国,教授,E-mail:wgweng@tsinghua.edu.cn
引用本文:   
沈锴欣, 贺治超, 翁文国. 化工多米诺事故中物理效应间的耦合作用[J]. 清华大学学报(自然科学版), 2022, 62(10): 1559-1570.
SHEN Kaixin, HE Zhichao, WENG Wenguo. Synergistic physical effects of domino accidents in the chemical industry. Journal of Tsinghua University(Science and Technology), 2022, 62(10): 1559-1570.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2022.21.021  或          http://jst.tsinghuajournals.com/CN/Y2022/V62/I10/1559
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] 高进东.化工储罐区池火灾多米诺效应风险评估[J].中国安全生产科学技术, 2013, 9(7):54-59. GAO J D. Risk assessment on domino effect caused by pool fire in chemical tanks[J]. Journal of Safety Science and Technology, 2013, 9(7):54-59.(in Chinese)
[2] CCPS (Centre for Chemical Process Safety). Guidelines for chemical process quantitative risk analysis[M]. 2nd ed. New York:American Institute of Chemical Engineers, 2000.
[3] Natural Hazard Research and Applications Information Center. Johnson K. State and community during the aftermath of Mexico City's November 19, 1984 Gas Explosion[M/OL].[1985-06]. https://digital.lib.usf.edu/SFS0001138/00001.
[4] 中华人民共和国中央人民政府,天津港"8·12"瑞海公司危险品仓库特别重大火灾爆炸事故调查报告[EB/OL].(2016-02-05). http://www.gov.cn/foot/2016-02/05/content_5039788.htm.The Central People's Government of the People's Republic of China, Investigation report of explosion accident in Tianjin Binhai New Area[EB/OL].(2016-02-05). http://www.gov.cn/foot/2016-02/05/content_5039788.htm.(in Chinese)
[5] 李树谦,胡兆吉.化工园区多米诺事故风险分析方法研究[J].安全生产与监督, 2008(3):56-58. LI S Q, HU Z J. Research on risk assessment method of domino accidents in chemical industry park[J]. Work Safety&Supervision, 2008(3):56-58.(in Chinese)
[6] COZZANI V, GUBINELLI G, ANTONIONI G, et al. The assessment of risk caused by domino effect in quantitative area risk analysis[J]. Journal of Hazardous Materials, 2005, 127(1-3):14-30.
[7] ABDOLHAMIDZADEH B, ABBASI T, RASHTCHIAN D, et al. A new method for assessing domino effect in chemical process industry[J]. Journal of Hazardous Materials, 2010, 182(1-3):416-426.
[8] RAD A, ABDOLHAMIDZADEH B, ABBASI T, et al. FREEDOM II:An improved methodology to assess domino effect frequency using simulation techniques[J]. Process Safety and Environmental Protection, 2014, 92(6):714-722.
[9] HE Z C, WENG W G. A dynamic and simulation-based method for quantitative risk assessment of the domino accident in chemical industry[J]. Process Safety and Environmental Protection, 2020, 144:79-92.
[10] 贾梅生,陈国华,胡昆.化工园区多米诺事故风险评价与防控技术综述[J].化工进展, 2017, 36(4):1534-1543. JIA M S, CHEN G H, HU K. Review of risk assessment and pre-control of domino effect in chemical industry park[J]. Chemical Industry and Engineering Progress, 2017, 36(4):1534-1543.(in Chinese)
[11] KAPPES M S, KEILER M, VON ELVERFELDT K, et al. Challenges of analyzing multi-hazard risk:A review[J]. Natural Hazards, 2012, 64(2):1925-1958.
[12] LANDUCCI G, ARGENTI F, SPADONI G, et al. Domino effect frequency assessment:The role of safety barriers[J]. Journal of Loss Prevention in the Process Industries, 2016, 44:706-717.
[13] 陈福真,张明广,王妍,等.油气储罐区多米诺事故耦合效应风险分析[J].中国安全科学学报, 2017, 27(10):111-116. CHEN F Z, ZHANG M G, WANG Y, et al. Risk analysis of coupling domino effect in petroliferous tank farm[J]. China Safety Science Journal, 2017, 27(10):111-116.(in Chinese)
[14] 张心语.化工罐区两池火耦合作用机理及增韧原理[D].广州:华南理工大学, 2020. ZHANG X Y. The coupling mechanism and resilience enhancing theory of double pool fires in chemical tank farm[D]. Guangzhou:South China University of Technology, 2020.(in Chinese)
[15] 张苗,宋文华.基于贝叶斯网络的化纤企业多米诺事故耦合效应风险评估方法研究[J].南开大学学报(自然科学版), 2019, 52(1):88-96. ZHANG M, SONG W H. Research on risk assessment method of domino accident coupling effect in chemical fiber enterprises based on Bayesian network[J]. Acta Scientiarum Naturalium Universitatis Nankaiensis, 2019, 52(1):88-96.(in Chinese)
[16] 冯显富,王艳,张科宇,等.火灾爆炸事故多米诺效应耦合模型研究[J].中国安全生产科学技术, 2013, 9(3):51-55. FENG X F, WANG Y, ZHANG K Y, et al. Study on coupled model of domino effect in fire and explosion accident[J]. Journal of Safety Science and Technology, 2013, 9(3):51-55.(in Chinese)
[17] DING L, KHAN F, ABBASSI R, et al. FSEM:An approach to model contribution of synergistic effect of fires for domino effects[J]. Reliability Engineering&System Safety, 2019, 189:271-278.
[18] DING L, KHAN F, JI J. A novel approach for domino effects modeling and risk analysis based on synergistic effect and accident evidence[J]. Reliability Engineering&System Safety, 2020, 203:107109.
[19] HE Z C, WENG W G. Synergic effects in the assessment of multi-hazard coupling disasters:Fires, explosions, and toxicant leaks[J]. Journal of Hazardous Materials, 2020, 388:121813.
[20] 韩非,陈飞,张姝丽,等.城市高压燃气管道泄漏后果影响范围[J].煤气与热力, 2017, 37(10):B07-B12. HAN F, CHEN F, ZHANG S L, et al. Influence range of leakage consequence of city high-pressure gas pipeline[J]. Gas&Heat, 2017, 37(10):B07-B12.(in Chinese)
[21] 王天瑜.天然气管道风险分析与安全距离计算方法研究[D].北京:中国矿业大学, 2017. WANG T Y. Risk analysis and study on calculation method of safety distances for natural gas pipelines[D]. Beijing:China University of Mining&Technology, 2017.(in Chinese)
[22] 张晓伟,张浩,杨茂林,等.隔爆墙后爆炸冲击波绕射与超压分布规律[J].北京理工大学学报, 2021, 41(4):372-379. ZHANG X W, ZHANG H, YANG M L, et al. Diffraction and overpressure distribution of blast wave behind explosion isolation wall[J]. Transactions of Beijing Institute of Technology, 2021, 41(4):372-379.(in Chinese)
[23] 杨科之,刘盛.空气冲击波传播和衰减研究进展[J].防护工程, 2020, 42(3):1-10. YANG K Z, LIU S. Progress of research on propagation and attenuation of air blast[J]. Protective Engineering, 2020, 42(3):1-10.(in Chinese)
[24] 中国人民解放军总装备部.面杀伤导弹战斗部静爆威力试验方法,第3部分:冲击波超压测试:GJB 6390.3-2008[S].中国:中国人民解放军总装备部, 2008. General Armament Department of the Chinese people's Liberation Army. Static power method for anti-surface missile warhead. Part 3:Measurement of blast wave overpressure:GJB 6390.3-2008[S]. China:General Armament Department of the Chinese people's Liberation Army, 2008.(in Chinese)
[25] 田晓虹.环境温度对冲击波测试影响的研究[D].太原:中北大学, 2020. TIAN X H. Research on the influence of ambient temperature on shock wave test[D]. Taiyuan:North University of China, 2020.(in Chinese)
[26] 孙宝平,张海英,吕淑然,等. LPG罐车泄漏爆炸事故验证及影响因素数值模拟[J].北京理工大学学报, 2021, 41(2):137-142. SUN B P, ZHANG H Y, LV S R, et al. Numerical simulation of validation and influence factors of explosion accident caused from LPG Tank Leakage[J]. Transactions of Beijing Institute of Technology, 2021, 41(2):137-142.(in Chinese)
[27] 聂源,蒋建伟,门建兵.考虑环境温、湿度的球形装药爆炸冲击波参数计算模型[J].爆炸与冲击, 2018, 38(4):735-742. NIE Y, JIANG J W, MEN J B. Calculation models for parameters of spherical charge blasting shock wave considering ambient temperature and humidity[J]. Explosion and Shock Waves, 2018, 38(4):735-742.(in Chinese)
[28] CASAL J. Evaluation of the effects and consequences of major accidents in industrial plants[M]. 2nd ed. Amsterdam:Elsevier, 2017.
[29] ALDUCHOV O A, ESKRIDGE R E. Improved magnus form approximation of saturation vapor pressure[J]. Journal of Applied Meteorology, 1996, 35(4):601-609.
[30] 潘旭海,蒋军成.化学危险性气体泄漏扩散模拟及其影响因素[J].南京化工大学学报(自然科学版), 2001(1):19-22. PAN X H, JIANG J C. Research on discharging dispersion of chemical dangerous cases and its influence Factors[J]. Journal of Nanjing University of Chemical Technology, 2001(1):19-22.(in Chinese)
[31] 宇德明,冯长根,曾庆轩,等.开放空气环境中的池火灾及其危险性分析[J].燃烧科学与技术, 1996(2):95-103. YU D M, FENG C G, ZENG Q X, et al. Pool fires in open air and their hazard analysis[J]. Journal of Combustion Science and Technology, 1996(2):95-103.(in Chinese)
[32] PIETERSEN C M. Consequences of accidental releases of hazardous material[J]. Journal of Loss Prevention in the Process Industries, 1990, 3(1):136-141.
[33] MAZZOLA C A, ADDIS R P. Atmospheric transport modeling resources[R]. Aiken:Stone and Webster Engineering Corporation, 1995.
[34] 邢志祥,王云慧,杨扣华,等.化学流程工业多米诺效应风险评估的研究进展[J].中国安全科学学报, 2014, 24(10):144-150. XING Z X, WANG Y H, YANG K H, et al. Review of progress in research on evaluation of domino effect risk in chemical process industry[J]. China Safety Science Journal, 2014, 24(10):144-150.(in Chinese)
[35] CROWL D A, LOUVAR J F. Chemical process safety-fundamentals with application[M]. New Jersey:Prentice-Hall, 1990.
[36] 谷清.我国大气模式计算的若干问题[J].环境科学研究, 2000, 13(1):40-43. GU Q. Research on several problems of atmospheric model calculation in China[J]. Research of Environmental Sciences, 2000, 13(1):40-43.(in Chinese)
[37] 清华大学合肥公共安全研究院.科研成果[EB/OL].(2021-05-25). http://www.tsinghua-hf.edu.cn/display/?id=458. Hefei Institute for Public Safety Research, Tsinghua University. Scientific research achievements[EB/OL].(2021-05-25). http://www.tsinghua-hf.edu.cn/display/?id=458.(in Chinese)
[38] STEINLE J U, Franck E U. High pressure combustion-Ignition temperatures to 1000 bar[J]. Berichte der Bunsengesellschaft für Physikalische Chemie, 1995, 99(1):66-73.
[39] 崔启笔.基于FLUENT的氯气泄漏扩散的数值模拟与应急预防的研究[D].焦作:河南理工大学, 2009. CUI Q B. Numerical simulation of chlorine gas leak dispersion and emergency prevention based on FLUENT[D]. Jiaozuo:Henan Polytechnic University, 2009.(in Chinese)
[40] 李天祺,赵振东,余世舟.石化企业毒气泄漏的数值模拟与危险性评估[J].安全与环境学报, 2011, 11(5):218-221. LI T Q, ZHAO Z D, YU S Z. Numerical simulation and hazard assessment of poisonous gas leakage in petrochemical works[J]. Journal of Safety and Environment, 2011, 11(5):218-221.(in Chinese)
[41] 国家安全监管总局.危险化学品生产、储存装置个人可接受风险标准和社会可接受风险标准(试行)[EB/OL].[2014-04-22]. https://wenku.baidu.com/view/454de86e30126edb6f1aff00bed5b9f3f90f72f0.html. State Administration of work safety. Personal acceptable risk standard and social acceptable risk standard for production and storage devices of hazardous chemicals (Trial)[EB/OL].[2014-04-22]. https://wenku.baidu.com/view/454de86e30126edb6f1aff00bed5b9f3f90f72f0.html.(in Chinese)
[1] 李玉, 王相钦, 闵敬春. 蛇形管内燃油变物性流动换热特性数值模拟[J]. 清华大学学报(自然科学版), 2024, 64(2): 337-345.
[2] 石云姣, 赵宁波, 郑洪涛. 进气畸变对重型燃气轮机燃压缸流动特性影响[J]. 清华大学学报(自然科学版), 2024, 64(1): 90-98.
[3] 李聪健, 高航, 刘奕. 基于数值模拟和机器学习的风场快速重构方法[J]. 清华大学学报(自然科学版), 2023, 63(6): 882-887.
[4] 钟茂华, 胡鹏, 陈俊沣, 程辉航, 吴乐, 魏旋. 顶部多点竖向排烟下地铁隧道烟气控制研究[J]. 清华大学学报(自然科学版), 2023, 63(5): 754-764.
[5] 孙继昊, 罗绍文, 赵宁波, 杨慧玲, 郑洪涛. 甲烷/空气燃烧NOx排放数值模型对比[J]. 清华大学学报(自然科学版), 2023, 63(4): 623-632.
[6] 孙逸凡, 朱炜, 吴玉新, 祁海鹰. Gao-Yong湍流模型对边界层转捩的适用性研究[J]. 清华大学学报(自然科学版), 2023, 63(4): 642-648.
[7] 高畅, 李岩军, 余莉, 聂舜臣. 帆片结构张满度变化对环帆伞气动性能的影响[J]. 清华大学学报(自然科学版), 2023, 63(3): 322-329.
[8] 陈冠华, 陈雅倩, 周宁, 贾贺, 荣伟, 薛晓鹏. 具有横向运动能力的圆形伞的设计[J]. 清华大学学报(自然科学版), 2023, 63(3): 338-347.
[9] 闫慧慧, 李昊昱, 周伯豪, 张煜洲, 兰旭东. 离心压气机性能影响机理研究及优化[J]. 清华大学学报(自然科学版), 2023, 63(10): 1672-1685.
[10] 高群翔, 孙琦, 彭威, 张平, 赵钢. 碘硫循环制氢中硫酸分解的全过程模拟方法[J]. 清华大学学报(自然科学版), 2023, 63(1): 24-32.
[11] 史琳, 许强辉. 稠油注空气开发技术的基础研究与应用[J]. 清华大学学报(自然科学版), 2022, 62(4): 722-734.
[12] 何鑫, 薛瑞, 郑星, 张骞, 龚建良. 边界层燃烧在超燃冲压发动机内的摩擦减阻特性[J]. 清华大学学报(自然科学版), 2022, 62(3): 562-572.
[13] 闫慧慧, 周伯豪, 李豪, 张煜洲, 兰旭东. 基于ANSYS的涡轴发动机压气机设计[J]. 清华大学学报(自然科学版), 2022, 62(3): 549-554,580.
[14] 张旨晗, 刘辉, 吕振雷, 侯岩松, 孙立风, 王石, 吴朝霞, 刘亚强. 大动物SPECT系统设计与数值模拟[J]. 清华大学学报(自然科学版), 2022, 62(12): 1875-1883.
[15] 韩亚东, 谭磊, 刘亚斌. 基于可控载荷的混流泵叶轮设计及试验研究[J]. 清华大学学报(自然科学版), 2022, 62(12): 1930-1937.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn