Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2022, Vol. 62 Issue (12): 1989-1995    DOI: 10.16511/j.cnki.qhdxxb.2022.26.029
  机械工程 本期目录 | 过刊浏览 | 高级检索 |
一种基于轮廓误差的NC数据补偿方法
张云1, 梁光顺1, 张赟2, 李燕2
1. 清华大学 机械工程系,北京 100084;
2. 北京市机电研究院有限责任公司,北京 100027
A compensation method of NC data based on contour error
ZHANG Yun1, LIANG Guangshun1, ZHANG Yun2, LI Yan2
1. Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China;
2. Beijing Mechanical & Electronical Technology Research Institute, Ltd., Beijing 100027, China
全文: PDF(5362 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 误差补偿是提升数控机床加工精度的重要手段。该文利用三坐标测量机, 测量精加工后六边形凹槽表面上部分点的三坐标, 并根据理想模型计算轮廓误差。以镜像反变形的思路, 对刀位点连线中点处的轮廓误差进行补偿, 得到新的NC数据。在一个立式加工中心上进行对照实验, 结果表明:误差补偿后, 零件的轮廓误差绝对值最大值降低了48.1%, 加工精度得到明显改善。基于轮廓误差的NC数据补偿方法, 对以直线加工路径构成的零件有很强的适用性。以刀位点连线中点为补偿对象有利于误差测量和程序设计。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张云
梁光顺
张赟
李燕
关键词 六边形凹槽轮廓误差补偿镜像反变形刀位点连线中点NC数据    
Abstract:Error compensation is an important means to improve the machining accuracy of NC machine tools. In this study, a three-coordinate measuring machine is used to measure the x, y, and z coordinates of points on the surface of a hexagonal groove after machining, and the contour error is calculated according to the ideal model. Next, based on mirror anti-deformation, the contour error at the midpoint of the tool point connection is compensated to obtain new NC data. The results indicate that after error compensation, the maximum absolute value of contour error of parts is reduced by 48.1%, and the machining accuracy is considerably improved. The compensation method of NC data based on contour error has strong applicability to parts composed of linear machining paths. Considering the midpoint of the tool point connection as the compensation object is conducive to error measurement and program design.
Key wordshexagonal groove    contour error compensation    mirror anti-deformation    midpoint of tool point connection    NC data
收稿日期: 2022-01-16      出版日期: 2022-11-10
引用本文:   
张云, 梁光顺, 张赟, 李燕. 一种基于轮廓误差的NC数据补偿方法[J]. 清华大学学报(自然科学版), 2022, 62(12): 1989-1995.
ZHANG Yun, LIANG Guangshun, ZHANG Yun, LI Yan. A compensation method of NC data based on contour error. Journal of Tsinghua University(Science and Technology), 2022, 62(12): 1989-1995.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2022.26.029  或          http://jst.tsinghuajournals.com/CN/Y2022/V62/I12/1989
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] YANG H, WANG Z, ZHANG T, et al. A review on vibration analysis and control of machine tool feed drive systems[J]. The International Journal of Advanced Manufacturing Technology, 2020, 107(1): 503-525.
[2] ZHAO J, LIU Y, LI Q. Research on error synthetical modeling of multi-functional composite five-axis CNC machine tool[C]// IEEE International Conference on Mechatronics and Automation. Harbin, China: IEEE, 2016: 1814-1821.
[3] LI X, LI D, LAO Y, et al. Overview of machine tool error detection technology[J]. Journal of Physics Conference Series, 2020, 1550: 032152.
[4] LEI L, ZHANG N, CAI P. Development of real-time prediction module for precision and error of CNC system finishing[J]. Journal of Physics: Conference Series, 2020, 1601(6): 062009.
[5] CHEN J G, WANG X C. Research on thermal error compensation technology of CNC machine tool under real cutting condition[C]// IEEE 4th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC). Chongqing, China: IEEE, 2021, 4: 324-330.
[6] LIU K, LIU Y, SUN M, et al. Comprehensive thermal compensation of the servo axes of CNC machine tools[J]. International Journal of Advanced Manufacturing Technology, 2016, 85(9): 2715-2728.
[7] LIU H, XIANG H, CHEN J, et al. Measurement and compensation of machine tool geometry error based on Abbe principle[J]. International Journal of Advanced Manufacturing Technology, 2018, 98(9): 2769-2774.
[8] CUI G, LU Y, GAO D, et al. A novel error compensation implementing strategy and realizing on Siemens 840D CNC systems[J]. International Journal of Advanced Manufacturing Technology, 2012, 61(5): 595-608.
[9] LIU Y, MIAO E, LIU H, et al. Robust machine tool thermal error compensation modelling based on temperature-sensitive interval segmentation modelling technology[J]. International Journal of Advanced Manufacturing Technology, 2020, 106(1): 655-669.
[10] MAREŠ M, HOREJŠ O, HAVLÍK L. Thermal error compensation of a 5-axis machine tool using indigenous temperature sensors and CNC integrated Python code validated with a machined test piece[J]. Precision Engineering, 2020, 66: 21-30.
[11] ZHU C Z. Research on modeling and compensation technique for 3-Dimension volumetric errors of CNC machine tools[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012. (in Chinese) 朱赤洲. 数控机床三维空间误差建模及补偿技术研究[D]. 南京: 南京航空航天大学, 2012.
[12] ABDULSHAHED A M, LONGSTAFF A P, FLETCHER S, et al. Thermal error modelling of a gantry-type 5-axis machine tool using a grey neural network model[J]. Journal of Manufacturing Systems, 2016, 41: 130-142.
[13] LI J, XIE F, LIU X J. Geometric error modeling and sensitivity analysis of a five-axis machine tool[J]. International Journal of Advanced Manufacturing Technology, 2016, 82(9-12): 2037-2051.
[14] CHEN S H, TSAI Y L. The machine-tool temperature variation measurement and compensation using regression analysis method[C]// International Conference on Advanced Materials for Science and Engineering (ICAMSE). Taiwan, China: IEEE, 2016: 673-676.
[15] DING S, HUANG X, YU C, et al. Novel method for position-independent geometric error compensation of five-axis orthogonal machine tool based on error motion[J]. International Journal of Advanced Manufacturing Technology, 2016, 83(5-8): 1069-1078.
[16] LIU P, YAO X, GE G, et al. A dynamic linearization modeling of thermally induced error based on data-driven control for CNC machine tools[J]. International Journal of Precision Engineering and Manufacturing, 2021, 22(2): 241-258.
[17] LUO T. Research on geometric error compensation of horizontal CNC machine tools[D]. Beijing: Beijing University of Technology, 2012. (in Chinese) 雒驼. 四轴卧式加工中心的几何误差补偿研究[D]. 北京: 北京工业大学, 2012.
[18] ZHU S W. Research on machining accuracy prediction and compensation technique for five-axis milling of complex parts[D]. Chengdu: Southwest Jiaotong University, 2013. (in Chinese) 朱绍维. 复杂零件五轴铣削加工精度预测与补偿技术研究[D]. 成都: 西南交通大学, 2013.
[19] FAN K G. Comprehensive compensation and application for multi-error elements on CNC machine[D]. Shanghai: Shanghai Jiao Tong University, 2012. (in Chinese) 范开国. 数控机床多误差元素综合补偿及应用[D]. 上海: 上海交通大学, 2012.
[20] MA W K. Research on the methods and key technologies for sculpture surface machining error compensation[D]. Tianjin: Tianjin University, 2016. (in Chinese) 马文魁. 复杂曲面加工误差补偿方法与关键技术研究[D]. 天津: 天津大学, 2016.
[21] LOU Y, MENG H, YANG J, et al. Task polar coordinate frame-based contouring control of biaxial systems[J]. IEEE Transactions on Industrial Electronics, 2013, 61(7): 3490-3501.
[22] CHEN H R, CHENG M Y, WU C H, et al. Real time parameter based contour error estimation algorithms for free form contour following[J]. International Journal of Machine Tools and Manufacture, 2016, 102: 1-8.
[23] PI S W, LIU Q, LIU Q T. A novel dynamic contour error estimation and control in high-speed CNC[J]. International Journal of Advanced Manufacturing Technology, 2018, 96(1-4): 547-560.
[24] WU J, XIONG Z, DING H. Integral design of contour error model and control for biaxial system[J]. International Journal of Machine Tools and Manufacture, 2015, 89: 159-169.
[25] GUAN L W. Accuracy evaluation technology and standard of five-axis linkage NC machine tool[J]. China Science and Technology Achivements, 2016, 17(15): 19-21. (in Chinese) 关立文. 五轴联动数控机床精度测评技术与标准[J]. 中国科技成果, 2016, 17(15): 19-21.
[26] YU C Y, ZHANG L. Research on error compensation technology of NC machine tool based on modifying NC data[J]. Journal of Chaohu College, 2018, 20(3): 80-84. (in Chinese) 于长有, 张丽. 基于修改NC数据的数控机床误差补偿技术研究[J]. 巢湖学院学报, 2018, 20(3): 80-84.
[27] LIU Y. Analysis and compensation of linear motion errors of precision machine tool[D]. Chongqing: Chongqing University of Technology, 2013. (in Chinese) 刘洋. 精密机床直线运动误差分析与补偿[D]. 重庆: 重庆理工大学, 2013.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn