Hydrothermal synthesis and photocatalytic properties of titania nanotubes synthesized from amorphous titanium hydroxide
KAI Li1,2, WANG Lina1,3, SHI Zhiming1
1. School of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot 010051, China; 2. School of Physics and Intelligent Manufacturing Engineering, Chifeng University, Chifeng 024000, China; 3. Students' Affairs Office, Inner Mongolia University of Finance and Economics, Hohhot 010051, China
Abstract:The nanotube synthesis process greatly influences the microstructure and photocatalytic characteristics of titania (TiO2) nanotubes. Most studies have synthesized nanotubes using anatase crystals or mixtures of anatase and rutile crystals. This study investigated the effect of the precursor on the formation of TiO2 nanotubes and on their photocatalytic properties by using hydrothermal synthesis of TiO2 nanotubes using amorphous titanium hydroxide (Ti(OH)4) as the titanium source. This study then analyzed the phase evolution and the morphology of the hydrothermal synthesized products and characterized the physical and chemical properties of the TiO2 nanotubes. The results show that the optimal temperature for the hydrothermal synthesis is 150 ℃ for 16 h. The hydrothermal product was first washed with water, then acid, and then with water again. The product was then calcined at 400 ℃ for 2 h to produce anatase nanotubes with good crystallinity. The hydrothermal reaction induced the amorphous Ti(OH)4 to transform into thin-flake sodium titanate (Na2Ti3O7). Then, the Na2Ti3O7 was transformed to titanate (H2Ti4O9) nanotubes induced by washing with water and acid. Finally, the calcination promoted conversion of the H2Ti4O9 nanotubes to anatase nanotubes. The greatest photocatalytic degradation occurred when the nanotubes were calcined at 400 ℃ for 2 h.
凯丽, 汪丽娜, 史志铭. 由非晶态氢氧化钛水热合成氧化钛纳米管及其光催化性能研究[J]. 清华大学学报(自然科学版), 2022, 62(12): 2035-2042.
KAI Li, WANG Lina, SHI Zhiming. Hydrothermal synthesis and photocatalytic properties of titania nanotubes synthesized from amorphous titanium hydroxide. Journal of Tsinghua University(Science and Technology), 2022, 62(12): 2035-2042.
[1] WANG Y, HE Y M, LAI Q H, et al. Review of the progress in preparing nano TiO2: An important environmental engineering material[J]. Journal of Environmental Sciences, 2014, 26(11): 2139-2177. [2] GONG J M, WANG X Q, LI X, et al. Highly sensitive visible light activated photoelectrochemical biosensing of organophosphate pesticide using biofunctional crossed bismuth oxyiodide flake arrays[J]. Biosensors and Bioelectronics, 2012, 38(1): 43-49. [3] ADACHI M, MURATA Y, OKADA I, et al. Formation of Titania nanotubes and applications for dye-sensitized solar cells[J]. Journal of the Electrochemical Society, 2003, 150(8): G488-G493. [4] TAURINO A M, CAPONE S, BOSCHETTI A, et al. Titanium dioxide thin films prepared by seeded supersonic beams for gas sensing applications[J]. Sensors and Actuators B: Chemical, 2004, 100(1-2): 177-184. [5] KASUGA T, HIRAMATSU M, HOSON A, et al. Titania nanotubes prepared by chemical processing[J]. Advanced Materials, 1999, 11(15): 1307-1311. [6] YAO B D, CHAN Y F, ZHANG X Y, et al. Formation mechanism of TiO2 nanotubes[J]. Applied Physics Letters, 2003, 82(2): 281-283. [7] LEE D S, LEE S Y, RHEE K Y, et al. Effect of hydrothermal temperature on photocatalytic properties of TiO2 nanotubes[J]. Current Applied Physics, 2014, 14(3): 415-420. [8] APHAIRAJ D, WIRUNMONGKOL T, NIYOMWAS S, et al. Synthesis of anatase TiO2 nanotubes derived from a natural leucoxene mineral by the hydrothermal method[J]. Ceramics International, 2014, 40(7): 9241-9247. [9] ZI T T. Hydrothermal synthsis and photocatalytic activity of TiO2 nanotube[D]. Harbin: Harbin University of Science and Technology, 2010. (in Chinese) 訾彤彤. 水热合成TiO2纳米管及光催化性能的研究[D]. 哈尔滨: 哈尔滨理工大学, 2010. [10] LIU Z J, ZHANG Q, QIN L C. Reduction in the electronic band gap of titanium oxide nanotubes[J]. Solid State Communications, 2007, 141(3): 168-171. [11] CHEN Y J, WEI Q F. Synthesis of TiO2 nanowires doped with Fe3+ and their photocatalytic activities[J]. Journal of Materials Science and Engineering, 2012, 30(2): 192-196. (in Chinese) 陈拥军, 韦秋芳. 掺铁二氧化钛纳米线的合成及其光催化性能[J]. 材料科学与工程学报, 2012, 30(2): 192-196. [12] YU X, WANG H, LIU Y, et al. One-step ammonia hydrothermal synthesis of single crystal anatase TiO2 nanowires for highly efficient dye-sensitized solar cells[J]. Journal of Materials Chemistry A, 2013, 1(6): 2110-2117. [13] ZHANG Y Y. Preparation and properties of TiO2 nanotube arrays and nanowires[D]. Changchun: Jilin University, 2009. (in Chinese) 张艳艳. TiO2纳米管阵列和纳米线的制备及其性能研究[D]. 长春: 吉林大学, 2009. [14] ZHAO P J, WU R, HOU J, et al. One-step hydrothermal synthesis and visible-light photocatalytic activity of ultrafine Cu-nanodot-modified TiO2 nanotubes[J]. Acta Physico-Chimica Sinica, 2012, 28(8): 1971-1977. (in Chinese) 赵鹏君, 吴荣, 侯娟, 等. 一步水热合成铜纳米颗粒负载二氧化钛复合纳米管及其可见光催化活性[J]. 物理化学学报, 2012, 28(8): 1971-1977. [15] VIEIRA G B, JOSÉH J, PETERSON M, et al. CeO2/TiO2 nanostructures enhance adsorption and photocatalytic degradation of organic compounds in aqueous suspension[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 353: 325-336. [16] DU J R. Effects of sintering atmosphere on phase transformation and photocatalysis behaviors of Fe-doped Titania[D]. Hohhot: Inner Mongolia University of Technology, 2014. (in Chinese) 杜境然. 烧结气氛对铁离子掺杂氧化钛相变及光催化性能的影响[D]. 呼和浩特: 内蒙古工业大学, 2014. [17] CAREY J H, LAWRENCE J, TOSINE H M. Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspensions[J]. Bulletin of Environmental Contamination and Toxicology, 1976, 16(6): 697-701. [18] DU L. Research on hydrothermal synthesis and photocatalytic activity of Fe3+-doped TiO2 nanotubes[D]. Wuhan: Wuhan University of Technology, 2013. (in Chinese) 杜露. 水热法制备掺铁TiO2纳米管及其光催化性能研究[D]. 武汉: 武汉理工大学, 2013. [19] LIU N, CHEN X Y, et al. A review on TiO2-based nanotubes synthesized via hydrothermal method: Formation mechanism, structure modification, and photocatalytic applications[J]. Catalysis Today, 2014, 225(15): 34-51. [20] LIU Y L, CHEN Y, GONG H, et al. Study on the adsorption characteristic of phosphate by nano-titanium hydroxide and calcined product[J]. Environmental Protection Science, 2013, 39(4): 29-32. (in Chinese) 刘艳磊, 陆岩, 宫红, 等. 纳米氢氧化钛及焙烧产物对磷酸根的吸附特性研究[J]. 环境保护科学, 2013, 39(4): 29-32. [21] ZHONG Y K, LI H G, ZENG Q H, et al. Study of the preparation of titanium hydroxide sol[J]. Journal of Zunyi Normal College, 2008, 10(2): 61-63. (in Chinese) 钟永科, 李华刚, 曾启华, 等. 氢氧化钛溶胶的制备及其性质的研究[J]. 遵义师范学院学报, 2008, 10(2): 61-63. [22] ZHANG M, JIN Z S, ZHANG J W, et al. Effect of annealing temperature on morphology, structure and photocatalytic behavior of nanotubed H2Ti2O4(OH)2[J]. Journal of Molecular Catalysis A: Chemical, 2004, 217(1-2): 203-210. [23] BAVYKIN D V, WALSH F C. Cheminform abstract: Elongated titanate nanostructures and their applications[J]. ChemInform, 2009, 40(18): 977-997. [24] MA R. Study on synthesis and photocatalytic properties of Fe-doped TiO2 nanotubes[D]. Hohhot: Inner Mongolia University of Technology, 2016. (in Chinese) 马瑞. 铁掺杂TiO2纳米管的合成及光催化性能研究[D]. 呼和浩特: 内蒙古工业大学, 2016. [25] LI Y. Study of morphology and optical absorption properties of TiO2 nanotube in phosphoric acid electrolyte[J]. Journal of Xi'an Polytechnic University, 2014, 28(3): 321-324. (in Chinese) 李艳. 磷酸电解液中TiO2纳米管的形貌及光吸收性能研究[J]. 西安工程大学学报, 2014, 28(3): 321-324. [26] OHTANI B, OGAWA A Y, NISHIMOTO S I. Photocatalytic activity of amorphous-anatase mixture of titanium (IV) oxide particles suspended in aqueous solutions[J]. The Journal of Physical Chemistry B, 1997, 101(19): 3746-3752. [27] SHI Z M, MA R, ZHANG X Y, et al. Effects of pre-annealing atmosphere on microstructure and photo- catalytic activities of Fe-doped titania nanotubes[J]. Rare Metal Materials and Engineering, 2017, 46(11): 3244-3252.