Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2022, Vol. 62 Issue (2): 294-302    DOI: 10.16511/j.cnki.qhdxxb.2021.21.021
  能源与动力工程 本期目录 | 过刊浏览 | 高级检索 |
流体性质对液滴碰撞壁面影响的数值研究
杜宇轩, 闵琪, 李衍智, 都家宇
清华大学 核能与新能源技术研究院, 先进核能技术协同创新中心, 先进反应堆工程与安全教育部重点实验室, 北京 100084
Numerical study of the effect of fluid properties on droplet impacts
DU Yuxuan, MIN Qi, LI Yanzhi, DU Jiayu
Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
全文: PDF(5133 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 不同学者对液滴碰撞动力学的研究结论具有差异,研究的流体种类也较为单一。该文建立的研究体系包含了水、甘油水溶液、硅油、常温液态金属在内的9组流体,将流体黏度、表面张力的研究范围扩展至1~970 mPa·s、20~500 mN/m,通过相场法数值模拟,补充低Reynolds数Re的液滴碰撞数据,探索已有理论的适用性。研究表明:碰撞初期,铺展因子β随无量纲时间τ变化的已有理论主要适用于Re>100的情况。最大铺展因子βmax与Weber数We在毛细力区满足βmaxWeb,在黏性力区满足βmaxReb,与已有理论相符,壁面润湿性对指数b的影响具有规律。最小中心厚度hmin*仅在We≥10时与已有理论hminRe-0.5相符;We<;10时,hmin*受到壁面润湿性和表面张力的明显影响。而当Re趋近于1时,βmaxhmin*由液滴初始动能和壁面润湿性决定,偏离上述幂函数规律。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杜宇轩
闵琪
李衍智
都家宇
关键词 液滴碰撞流体性质壁面润湿性铺展因子中心厚度相场法    
Abstract:Previous research on droplet impact dynamics has yielded different results, and the types of fluids studied are not sufficiently diverse. This project numerically modeled droplet impact dynamics with nine kinds of fluids including water, glycerite, silicone oil, and liquid metals at room temperature with viscosities of 1-970 mPa·s and surface tensions of 20-500 mN/m. The phase-field model was used to supplement the data at low Reynolds numbers to explore the applicability of existing theories. The results show that at the beginning of the impact, the existing law for the spread factor, β, varying with the dimensionless time, τ, is applicable for Re>100. The simulation results are consistent with existing theory that the maximum spread factor, βmax, scales as βmaxWeb in the capillary regime and βmaxReb in the viscous regime. The effect of wall wettability on the exponent b was also analyzed. The minimum center thickness, hmin*, is consistent with the existing theory of hmin*Re-0.5 only when We ≥ 10. For We < 10, the wall wettability and surface tension strongly influence hmin*. As Re tends to 1, βmax and hmin* are determined by the initial kinetic energy of droplet and wettability of target surface, but they deviate from the above power function laws.
Key wordsdroplet impact    fluid properties    wall wettability    spread factor    central thickness    phase-field method
收稿日期: 2020-12-09      出版日期: 2022-01-22
基金资助:国家自然科学基金资助项目(51976104,51676113)
通讯作者: 闵琪,副研究员,E-mail:minq86@tsinghua.edu.cn      E-mail: minq86@tsinghua.edu.cn
作者简介: 杜宇轩(1989-),男,硕士研究生
引用本文:   
杜宇轩, 闵琪, 李衍智, 都家宇. 流体性质对液滴碰撞壁面影响的数值研究[J]. 清华大学学报(自然科学版), 2022, 62(2): 294-302.
DU Yuxuan, MIN Qi, LI Yanzhi, DU Jiayu. Numerical study of the effect of fluid properties on droplet impacts. Journal of Tsinghua University(Science and Technology), 2022, 62(2): 294-302.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2021.21.021  或          http://jst.tsinghuajournals.com/CN/Y2022/V62/I2/294
  
  
  
  
  
  
  
  
  
  
  
  
[1] KIM J. Spray cooling heat transfer:The state of the art[J]. International Journal of Heat and Fluid Flow, 2007, 28:753-767.
[2] CHEN Y F, WANG J L. Radiological consequences of the startup timing of a containment spray system[J]. Journal of Tsinghua University (Science and Technology), 2013, 53(4):442-446. (in Chinese)陈迎锋, 王建龙. 喷淋系统启动时机对辐射后果的影响[J]. 清华大学学报(自然科学版), 2013, 53(4):442-446.
[3] BARTOLO D, JOSSERAND C, BONN D. Retraction dynamics of aqueous drops upon impact on non-wetting surfaces[J]. Journal of Fluid Mechanics, 2005, 545:329-338.
[4] XU L, ZHANG W W, NAGEL S R. Drop splashing on a dry smooth surface[J]. Physical Review Letters, 2005, 94(18):184505.
[5] ANTONINI C, AMIRFAZLI A, MARENGO M. Drop impact and wettability:From hydrophilic to superhydrophobic surfaces[J]. Physics of Fluids, 2012, 24(10):673-687.
[6] WANG X, CHEN L Q, BONACCURSO E. Comparison of spontaneous wetting and drop impact dynamics of aqueous surfactant solutions on hydrophobic polypropylene surfaces:Scaling of the contact radius[J]. Colloid and Polymer Science, 2015, 293(1):257-265.
[7] LIN S J, ZHAO B Y, ZOU S, et al. Impact of viscous droplets on different wettable surfaces:Impact phenomena, the maximum spreading factor, spreading time and post-impact oscillation[J]. Journal of Colloid and Interface Science, 2018, 516:86-97.
[8] YAO Y N, LI C, TAO Z X, et al. Experimental study of the dynamic characteristics of an oblique impact of a water droplet[J]. Journal of Tsinghua University (Science and Technology), 2019, 59(2):129-134. (in Chinese)姚一娜, 李聪, 陶振翔, 等. 液滴碰撞倾斜壁面的动力学特性[J]. 清华大学学报(自然科学版), 2019, 59(2):129-134.
[9] YARIN A L. Drop impact dynamics:Splashing, spreading, receding, bouncing …[J]. Annual Review of Fluid Mechanics, 2006, 38(1):159-192.
[10] THORODDSEN S T, ETOH T G, TAKEHARA K. High-speed imaging of drops and bubbles[J]. Annual Review of Fluid Mechanics, 2008, 40(1):257-285.
[11] JOSSERAND C, THORODDSEN S T. Drop impact on a solid surface[J]. Annual Review of Fluid Mechanics, 2016, 48(1):365-391.
[12] KHOJASTEH D, KAZEROONI M, SALARIAN S, et al. Droplet impact on superhydrophobic surfaces:A review of recent developments[J]. Journal of Industrial and Engineering Chemistry, 2016, 42:1-14.
[13] RIOBOO R, MARENGO M, TROPEA C. Time evolution of liquid drop impact onto solid, dry surfaces[J]. Experiments in Fluids, 2002, 33(1):112-124.
[14] CLANET C, BÉGUIN C, RICHARD D, et al. Maximal deformation of an impacting drop[J]. Journal of Fluid Mechanics, 2004, 517:199-208.
[15] RICHARD D, QUÉRÉ D. Bouncing water drops[J]. Europhysics Letters, 2000, 50(6):769-775.
[16] RICHARD D, CLANET C, QUÉRÉ D. Surface phenomena:Contact time of a bouncing drop[J]. Nature, 2002, 417:811.
[17] MUNDO C, SOMMERFELD M, TROPEA C. Droplet-wall collisions:Experimental studies of the deformation and breakup process[J]. International Journal of Multiphase Flow, 1995, 21(2):151-173.
[18] VANDERWAL R L, BERGER G M, MOZES S D. The splash/non-splash boundary upon a dry surface and thin fluid film[J]. Experiments in Fluids, 2006, 40:53-59.
[19] GUPTA A, KUMAR R. Droplet impingement and breakup on a dry surface[J]. Computers and Fluids, 2010, 39(9):1696-1703.
[20] ZHANG D, PAPADIKIS K, GU S. Application of a high density ratio Lattice-Boltzmann model for the droplet impingement on flat and spherical surfaces[J]. International Journal of Thermal Sciences, 2014, 84:75-85.
[21] FENG J. A computational study of high-speed microdroplet impact onto a smooth solid surface[J]. Journal of Applied Fluid Mechanics, 2017, 10(1):243-256.
[22] DU J Y, ZHANG Y Y, MIN Q. Numerical investigations of the spreading and retraction dynamics of viscous droplets impact on solid surfaces[J]. Colloids and Surfaces A, 2020, 125649.
[23] PASANDIDEH-FARD M, QIAO Y M, CHANDRA S, et al. Capillary effects during droplet impact on a solid surface[J]. Physics of Fluids, 1996, 8(3):650-659.
[24] ROISMAN I V. Inertia dominated drop collisions. Ⅱ. An analytical solution of the Navier-Stokes equations for a spreading viscous film[J]. Physics of Fluids, 2009, 21:052104.
[25] FEDORCHENKO A I, WANG A B, WANG Y H. Effect of capillary and viscous forces on spreading of a liquid drop impinging on a solid surface[J]. Physics of Fluids, 2005, 17:093104.
[26] EGGERS J, FONTELOS M A, JOSSERAND C, et al. Drop dynamics after impact on a solid wall:Theory and simulations[J]. Physics of Fluids, 2010, 22:062101.
[27] ROISMAN I V, RIOBOO R, TROPEA C. Normal impact of a liquid drop on a dry surface:Model for spreading and receding[J]. Proceedings of the Royal Society A, 2002, 458:1411-1430.
[28] SCHROLL R D, JOSSERAND C, ZALESKI S, et al. Impact of a viscous liquid drop[J]. Physical Review Letters, 2010, 104:034504.
[29] LAGUBEAU G, FONTELOS M A, JOSSERAND C, et al. Spreading dynamics of drop impacts[J]. Journal of Fluid Mechanics, 2012, 713:50-60.
[30] ZHU Y, LIU H R, MU K, et al. Dynamics of drop impact onto a solid sphere:Spreading and retraction[J]. Journal of Fluid Mechanics, 2017, 824(3).
[31] HIRT C W, NICHOLS B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39(1):201-225.
[32] OSHER S. Fronts propagating with curvature-dependent speed:Algorithms based on Hamilton-Jacobi formulations[J]. Journal of Computational Physics, 1988, 79(1):12-49.
[33] UNVERDI S O, TRYGGVASON G. A front-tracking method for viscous, incompressible, multi-fluid flows[J]. Journal of Computational Physics, 1992, 100(1):25-37.
[34] JACQMIN D. Calculation of two-phase Navier-Stokes flows using phase-field modeling[J]. Journal of Computational Physics, 1999, 155(1):96-127.
[35] WANG Z C, DONG S C, TRIANTAFYLLOU M S, et al. A stabilized phase-field method for two-phase flow at high Reynolds number and large density/viscosity ratio[J]. Journal of Computational Physics, 2019, 397:108832.
[36] LIM C Y, LAM Y C. Phase-field simulation of impingement and spreading of micro-sized droplet on heterogeneous surface[J]. Microfluidics and Nanofluidics, 2014, 17:131-148.
[37] ASHOKE RAMAN K, JAIMAN K R, LEE T S, et al. Dynamics of simultaneously impinging drops on a dry surface:Role of impact velocity and air inertia[J]. Journal of Colloid and Interface Science, 2017, 486:265-276.
[38] XIAO J, PAN F, XIA H T, et al. Computational study of single droplet deposition on randomly rough surfaces:Surface morphological effect on droplet impact dynamics[J]. Industrial and Engineering Chemistry Research, 2018, 57:7664-7675.
[39] CAHN J W, HILLIARD J E. Free energy of a nonuniform system. Ⅲ. Nucleation in a two-component incompressible fluid[J]. The Journal of Chemical Physics, 1959, 31(3):688-699.
[40] WÖRNER M. Numerical modeling of multiphase flows in microfluidics and micro process engineering:A review of methods and applications[J]. Microfluidics and Nanofluidics, 2012, 12(6):841-886.
[41] YUE P T, ZHOU C F, FENG J J, et al. Phase-field simulations of interfacial dynamics in viscoelastic fluids using finite elements with adaptive meshing[J]. Journal of Computational Physics, 2006, 219:47-67.
[42] ŠIKALO Š, WILHELM H D, ROISMAN I V, et al. Dynamic contact angle of spreading droplets:Experiments and simulations[J]. Physics of Fluids, 2005, 17:062103.
[43] VADILLO D C, SOUCEMARIANADIN A, DELATTRE C, et al. Dynamic contact angle effects onto the maximum drop impact spreading on solid surfaces[J]. Physics of Fluids, 2009, 21:122002.
[44] WANG F J, FANG T G. Post-impact drop vibration on a hydrophilic surface[J]. Experimental Thermal and Fluid Science, 2018, 98:420-428.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn