Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2022, Vol. 62 Issue (3): 385-390,399    DOI: 10.16511/j.cnki.qhdxxb.2021.21.022
  机械工程 本期目录 | 过刊浏览 | 高级检索 |
基于AVL-EXCITE的发动机连杆轴承空化特性模拟
李新新1, 杜祥宁2, 李远哲1, 曹恒超2, 田煜1
1. 清华大学 机械工程系, 摩擦学国家重点实验室, 北京 100084;
2. 潍柴动力股份有限公司, 潍坊 261061
Cavitation characterization simulation in connecting-rod bearings based on AVL-EXCITE
LI Xinxin1, DU Xiangning2, LI Yuanzhe1, CAO Hengchao2, TIAN Yu1
1. State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China;
2. Weichai Power Co., Ltd., Weifang 261061, China
全文: PDF(8087 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 空化现象在流体动压润滑中常见而又重要,空化的产生通常会造成润滑膜的破裂,影响润滑性能,甚至引起气蚀。这在柴油发动机连杆轴承中尤其需要关注,因此对其空化特性进行准确模拟具有重要意义。该文基于AVL-EXCITE软件平台,建立了发动机的柔性多体动力学耦合弹性流体动压润滑(EHL)仿真模型。结果表明,连杆大端轴承在做功冲程中空化区域在出口区,呈"手指形"分布,并且轴径油孔快速经过空化区域,可能会导致空化区域内的气泡破裂,发生气蚀。这为气蚀位点的预测提供了一种潜在的方法。此外,还考察了润滑油黏度和供油压强对空化特性的影响,指出适当提高润滑油黏度及供油压强可减缓空化效应。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李新新
杜祥宁
李远哲
曹恒超
田煜
关键词 润滑空化弹性流体动压润滑(EHL)连杆滑动轴承    
Abstract:Cavitation is common and important in hydrodynamic lubrication that generally causes the rupture of lubrication film and affects the performance of the lubrication, which even leads to cavitation erosion in some situations. This is especially important in connecting-rod bearings in diesel engines. Thus, accurately characterizing cavitation is of great significance. Herein, a multi-body dynamic model of an engine considering elastohydrodynamic lubrication (EHL) was established based on the AVL-EXCITE software platform. According to the EHL results, a finger-like cavitation region in the big-end bearing of the connecting rod was distributed in the lubrication outlet during the work stroke. Meanwhile, the cavitation bubbles in the cavitation region might collapse and result in cavitation erosion when the oil supply bore passed through. This provides a potential method to predict the occurrence of cavitation erosion. Furthermore, the influences of lubricating-oil viscosity and oil-supply pressure on cavitation characteristics were investigated. An appropriate increase in these two parameters can slow down the cavitation effect.
Key wordslubrication    cavitation    elastohydrodynamic lubrication (EHL)    connecting-rod bearings
收稿日期: 2021-01-05      出版日期: 2022-03-10
基金资助:田煜,教授,E-mail:tianyu@tsinghua.edu.cn
引用本文:   
李新新, 杜祥宁, 李远哲, 曹恒超, 田煜. 基于AVL-EXCITE的发动机连杆轴承空化特性模拟[J]. 清华大学学报(自然科学版), 2022, 62(3): 385-390,399.
LI Xinxin, DU Xiangning, LI Yuanzhe, CAO Hengchao, TIAN Yu. Cavitation characterization simulation in connecting-rod bearings based on AVL-EXCITE. Journal of Tsinghua University(Science and Technology), 2022, 62(3): 385-390,399.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2021.21.022  或          http://jst.tsinghuajournals.com/CN/Y2022/V62/I3/385
  
  
  
  
  
  
  
  
[1] REYNOLDS O. IV. On the theory of lubrication and its application to Mr. Beauchamp Tower's experiments, including an experimental determination of the viscosity of olive oil[J]. Philosophical Transactions of The Royal Society of London, 1886, 177:157-234.
[2] ELROD H G. A computer program for cavitation and starvation problems[J]. Cavitation and Related Phenomena in Lubrication, 1974, 37:37-41.
[3] ELROD H G. A cavitation algorithm[J]. Journal of Lubrication Technology, 1981, 103:350-354.
[4] VIJAYARAGHAVAN D, KEITH Y G. Development and evaluation of cavitation algorithm[J]. Tribology Transactions, 1989, 32:225-233.
[5] VIJAYARAGHAVAN D, BREWE D E, KEITH Y G. Effect of out-of-roundness on the performance of a diesel engine connecting-rod bearing[J]. ASME Journal of Tribology, 1993, 115(3):538-543.
[6] VINCENT B, MASPEYROT P, FRENE J. Cavitation in dynamically loaded journal bearings using mobility method[J]. Wear, 1996, 193(2):155-162.
[7] VINCENT B, MASPEYROT P, FRENE J. Cavitation in journal bearing using multigrid techniques[C]//The 19963rd Biennial Joint Conference on Engineering Systems Design and Analysis. New York:ASME Press, 1996:195-200.
[8] KORNFELD M, SUVOROV L. On the destructive action of cavitation[J]. Journal of Applied Physics, 1944, 15(6):495-506.
[9] BENJAMIN T B, ELLIS A T. The collapse of cavitation bubbles and the pressures thereby produced against solid boundaries[J]. Philosophical Transactions for the Royal Society of London. Series A, Mathematical and Physical Sciences, 1966, 260:221-240.
[10] PHILIPP A, LAUTERBORN W. Cavitation erosion by single laser produced bubbles[J]. Journal of Fluid Mechanics, 1998, 361:75-116.
[11] WANG Q, LIU W, ZHANG A M, et al. Bubble dynamics in a compressible liquid in contact with a rigid boundary[J]. Interface Focus, 2015, 5(5):20150048.
[12] 孟范蕾, 张宝义. 动载荷作用下滑动轴承的气蚀问题:分析和预测[J]. 内燃机与配件, 2006(1):25-29.MENG F L, ZHANG B Y. Cavitation erosion problems in dynamically loaded plain bearings:Analysis and prediction[J]. Internal Combustion Engine & Parts. 2006(1):25-29. (in Chinese)
[13] 李疆, 陈皓生. Fluent环境中近壁面微空泡溃灭的仿真计算[J]. 摩擦学学报, 2008(4):311-315.LI J, CHNE H S. Numerical simulation of micro bubble collapse near solid wall in FLUENT environment[J]. Tribology,2008(4):311-315. (in Chinese)
[14] 夏冬生, 孙昌国, 刘亚喆, 等. 近固壁微米尺度空泡溃灭的数值研究[J]. 摩擦学学报, 2018, 38(6):711-720.XIA D S, SUN C G, LIU Y Z, et al. Numerical simulation of micrometer-sized bubble collapse near a rigid boundary[J]. Tribology, 2018, 38(6):711-720. (in Chinese)
[15] JAKOBSSON B, FLOBERG L. The finite journal bearing considering vaporization[J]. Transactions of Chalmers University Technology, 1957:190.
[16] FLOBERG L. On journal bearing lubrication considering the tensile strength of the liquid lubricant[M]. Lund, Sweden:Lund Technical University Press, 1973.
[17] FLOBERG L. Cavitation boundary conditions with regard to the number of streamers and tensile strength of the liquid[C]//Cavitation and Related Phenomena in Lubrication:Proceedings of the 1st Leeds-Lyon Symposium on Tribology. London:Mechanical Engineering Publications Ltd., 1974:31-36.
[18] OLSSON K O. Cavitation in dynamically loaded bearings[J]. Transactions of Chalmers University of Technology, 1965:308.
[1] 郭伟成, 廖元太, 张洪玉. 润滑水凝胶涂层研究进展[J]. 清华大学学报(自然科学版), 2024, 64(3): 381-392.
[2] 邱豪楠, 刘威, 唐悦, 王胡军, 郑靖. 仿生超滑涂层研究进展[J]. 清华大学学报(自然科学版), 2024, 64(3): 393-408.
[3] 王钦, 贺迪, 桂良进, 胡智宇, 彭金, 范子杰. 考虑系统变形的驱动桥准双曲面齿轮啮合效率计算方法[J]. 清华大学学报(自然科学版), 2024, 64(1): 33-43.
[4] 杨琼方, 黄修长, 李晔. 船用螺旋桨水动力、空化和低噪声集成设计[J]. 清华大学学报(自然科学版), 2024, 64(1): 75-89.
[5] 张长, 田继胤, 郭丹, 牛青波. 考虑热膨胀影响的脂润滑高速角接触球轴承热特性分析[J]. 清华大学学报(自然科学版), 2022, 62(3): 482-492.
[6] 李玉龙, 何永勇, 雒建斌. 航空柱塞泵关键摩擦副表面改性与性能增强[J]. 清华大学学报(自然科学版), 2021, 61(12): 1405-1422.
[7] 姚志峰, 赖桂桦, 刘婧, 曾永顺. 前缘空化对弹性水翼振动特性影响数值模拟[J]. 清华大学学报(自然科学版), 2021, 61(11): 1325-1333.
[8] 易双, 葛翔宇, 李津津. 液体超滑技术发展现状及展望[J]. 清华大学学报(自然科学版), 2020, 60(8): 617-629.
[9] 王曦梓, 韩英, 赵微微, 张洪玉. 医用聚电解质润滑涂层[J]. 清华大学学报(自然科学版), 2020, 60(8): 630-638.
[10] 张玉玺, 吴丹, 杨亚鹏, 马信国, 梁雄. 冷却润滑方式对CFRP/Al叠层钻孔质量及轴向力的影响[J]. 清华大学学报(自然科学版), 2018, 58(4): 402-410.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn