Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2022, Vol. 62 Issue (3): 438-446    DOI: 10.16511/j.cnki.qhdxxb.2021.26.011
  机械工程 本期目录 | 过刊浏览 | 高级检索 |
基于LPV/H鲁棒控制的重型商用车自动循迹
董晴, 季学武, 刘玉龙, 陶书鑫, 刘亚辉
清华大学 汽车安全与节能国家重点实验室, 北京 100084
Robust LPV/H control for automatic path tracking of heavy commercial vehicles
DONG Qing, JI Xuewu, LIU Yulong, TAO Shuxin, LIU Yahui
State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China
全文: PDF(5882 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 在重型商用车自动循迹过程中,外部干扰的不确定性和系统状态的非线性通常会降低轨迹跟踪精度,为控制器的设计带来很大挑战。该文提出了一种新型重型商用车线性参数时变(linear parameter varying,LPV)/H鲁棒控制器,解决了道路曲率的不确定性和纵向车速的时变性带来的轨迹跟踪精度降低的问题。对系统性能指标进行加权,利用增广的商用车四自由度动力学模型和轨迹跟踪模型设计了重型商用车横向H鲁棒控制器;针对车辆纵向速度时变的问题,设计了改进的梯形多胞体LPV控制器。最终,通过联合仿真和硬件在环实验,验证了该控制算法的有效性和实时性。研究结果表明:该LPV/H控制算法改善了原有控制算法的保守性,在保证重型商用车自动循迹稳定性的同时,能够显著提升轨迹跟踪精度。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
董晴
季学武
刘玉龙
陶书鑫
刘亚辉
关键词 重型商用车自动循迹鲁棒控制梯形多胞体硬件在环实验    
Abstract:The uncertainties of external disturbances and the nonlinearity of system states usually reduce path tracking accuracy for automatic path tracking of heavy commercial vehicles which then complicates the controller design. This paper presents a robust LPV (linear parameter varying)/H lateral motion controller which provides good path tracking accuracy regardless of uncertainties in the road curvature and variations of the longitudinal speed. A weighted performance index and the robust H controller were designed for heavy commercial vehicles using a generalized 4-DOF dynamic model and an automatic path tracking model. An improved trapezoidal polytope LPV controller was designed to account for the vehicle speed variations. Simulations and a hardware-in-loop (HIL) implementation show the effectiveness and real-time response of the control algorithm. The results show that this LPV/H control algorithm improves the conservativeness of the original control algorithm and significantly improves the trajectory tracking accuracy while ensuring automatic tracking stability of heavy commercial vehicles.
Key wordsheavy commercial vehicles    automatic path tracking    robust control    trapezoidal polytope    hardware-in-loop (HIL) implementation
收稿日期: 2021-01-01      出版日期: 2022-03-10
基金资助:刘亚辉,副教授,E-mail:liuyahui@tsinghua.edu.cn
引用本文:   
董晴, 季学武, 刘玉龙, 陶书鑫, 刘亚辉. 基于LPV/H鲁棒控制的重型商用车自动循迹[J]. 清华大学学报(自然科学版), 2022, 62(3): 438-446.
DONG Qing, JI Xuewu, LIU Yulong, TAO Shuxin, LIU Yahui. Robust LPV/H control for automatic path tracking of heavy commercial vehicles. Journal of Tsinghua University(Science and Technology), 2022, 62(3): 438-446.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2021.26.011  或          http://jst.tsinghuajournals.com/CN/Y2022/V62/I3/438
  
  
  
  
  
  
  
  
[1] TURRI V, BESSELINK B, JOHANSSON K H. Cooperative look-ahead control for fuel-efficient and safe heavy-duty vehicle platooning[J]. IEEE Transactions on Control Systems Technology, 2017, 25(1):12-28.
[2] XU S B, PENG H. Design, analysis, and experiments of preview path tracking control for autonomous vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(1):48-58.
[3] CUI Q J, DING R J, ZHOU B, et al. Path-tracking of an autonomous vehicle via model predictive control and nonlinear filtering[J]. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering, 2018, 232(9):1237-1252.
[4] YAO Q Q, TIAN Y. A model predictive controller with longitudinal speed compensation for autonomous vehicle path tracking[J]. Applied Sciences, 2019, 9(22):4739.
[5] 赵林峰, 陈无畏, 王俊, 等. 基于可拓滑模线控转向控制策略研究[J]. 机械工程学报, 2019, 55(2):126-134.ZHAO L F, CHEN W W, WANG J, et al. Research on steering-by-wire control strategy based on extension sliding mode control[J]. Journal of Mechanical Engineering, 2019, 55(2):126-134. (in Chinese)
[6] SUN C Y, ZHANG X, ZHOU Q, et al. A model predictive controller with switched tracking error for autonomous vehicle path tracking[J]. IEEE Access, 2019, 7:53103-53114.
[7] SUBRAMANIYAM K V, SUBRAMANIAN S C. Analysis of cornering response and stability of electrified heavy commercial road vehicles with regenerative braking[J]. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering, 2020, 234(6):1672-1689.
[8] ACARMAN T, REDMILL K A, OZGUNER U. A robust controller design for drive by wire hydraulic power steering system[C]//Proceedings of the 2002 American Control Conference. Anchorage, USA:IEEE, 2002:8-10.
[9] MORRISON G, CEBON D. Combined emergency braking and turning of articulated heavy vehicles[J]. Vehicle System Dynamics, 2017, 55(5):725-749.
[10] YAKUB F, MORI Y. Comparative study of autonomous path-following vehicle control via model predictive control and linear quadratic control[J]. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering, 2015, 229(12):1695-1714.
[11] IMINE H, DJEMAÏ M. Switched control for reducing impact of vertical forces on road and heavy-vehicle rollover avoidance[J]. IEEE Transactions on Vehicular Technology, 2016, 65(6):4044-4052.
[12] KIM E, KIM J, SUNWOO M. Model predictive control strategy for smooth path tracking of autonomous vehicles with steering actuator dynamics[J]. International Journal of Automotive Technology, 2014, 15(7):1155-1164.
[13] WANG R R, JING H, HU C, et al. Robust H path following control for autonomous ground vehicles with delay and data dropout[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(7):2042-2050.
[14] JI X W, LIU Y L, He X K, et al. Interactive control paradigm-based robust lateral stability controller design for autonomous automobile path tracking with uncertain disturbance:A dynamic game approach[J]. IEEE Transactions on Vehicular Technology, 2018, 67(8):6906-6920.
[15] YANG I, KIM H J, JEON W H, et al. Development of realistic shortest path algorithm considering lane changes[J]. Journal of Advanced Transportation, 2016, 50(4):541-551.
[16] LIU Y L, JI X W, YANG K M, et al. Finite-time optimized robust control with adaptive state estimation algorithm for autonomous heavy vehicle[J]. Mechanical Systems and Signal Processing, 2020, 139:106616.
[17] VU V T, SENAME O, DUGARD L, et al. Enhancing roll stability of heavy vehicle by LQR active anti-roll bar control using electronic servo-valve hydraulic actuators[J]. Vehicle System Dynamics, 2017, 55(9):1405-1429.
[18] HINGWE P, TAN H S, PACKARD A K, et al. Linear parameter varying controller for automated lane guidance:Experimental study on tractor-trailers[J]. IEEE Transactions on Control Systems Technology, 2002, 10(6):793-806.
[19] 石冠男. 商用车动力学状态识别及稳定性协调控制研究[D]. 长春:吉林大学, 2018.SHI G N, Research on dynamics state estimation and stability coordinated control for commercial vehicle[D]. Changchun:Jilin University, 2018. (in Chinese)
[20] SCHERER C. The Riccati inequality and state-space H-optimal control[D]. Germany:Universität Würzburg, 1990.
[21] XIE L H. Output feedback H control of systems with parameter uncertainty[J]. International Journal of Control, 1996, 63(4):741-750.
[22] SCHERER C, GAHINET P, CHILALI M. Multi-objective output-feedback control via LMI optimization[J]. IEEE Transactions on Automatic Control, 1997, 42(7):896-911.
[23] ZENG X H, LI G H, YIN G D, et al. Model predictive control-based dynamic coordinate strategy for hydraulic hub-motor auxiliary system of a heavy commercial vehicle[J]. Mechanical Systems and Signal Processing, 2018, 101:97-120.
[24] PALLADINO L, DUC G, POTHIN R. LPV control for μ-split braking assistance of a road vehicle[C]//Proceedings of the 44th IEEE Conference on Decision and Control, Seville, Spain:IEEE, 2005.
[25] HUANG X Y, ZHANG H, ZHANG G G, et al. Robust weighted gain-scheduling H vehicle lateral motion control with considerations of steering system backlash-type hysteresis[J]. IEEE Transactions on Control Systems Technology, 2014, 22(5):1740-1753.
[1] 王靖瑶, 郑华青, 郭景华, 罗禹贡. 通信延迟下智能电动汽车队列分布式自适应鲁棒控制[J]. 清华大学学报(自然科学版), 2021, 61(9): 889-897.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn