Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2022, Vol. 62 Issue (3): 476-481    DOI: 10.16511/j.cnki.qhdxxb.2021.25.021
  机械工程 本期目录 | 过刊浏览 | 高级检索 |
铁基激光熔敷层搭接与非搭接区摩擦性能
吴影1,2, 刘艳1, 陈文静3, 陈辉1
1. 西南交通大学 材料科学与工程学院, 成都 610031;
2. 清华大学 机械工程系, 北京 100084;
3. 西华大学 材料科学与工程学院, 成都 610039
Tribological properties of overlap and non-overlap zones in laser-clad iron-based coatings
WU Ying1,2, LIU Yan1, CHEN Wenjing3, CHEN Hui1
1. School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China;
2. Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China;
3. School of Materials Science and Engineering, Xihua University, Chengdu 610039, China
全文: PDF(7884 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 多层多道激光熔敷涂层的组织呈周期性变化规律,总体分为搭接区和非搭接区。为研究涂层中不同区域的摩擦磨损性能,该文采用线性往复摩擦试验,分别设定5和25 N的压力,150和300 s的摩擦时长对铁基涂层的搭接区与非搭接区的摩擦磨损性能进行研究,并结合不同区域的组织和物相的分析,讨论了摩擦性能与组织之间的关系,及摩擦过程中组织的演变规律。研究结果表明:在低压力下,抗磨损性能受组织影响较大,搭接区由于组织粗大、α-Fe含量较少,其抗磨损性能较差;而非搭接区组织细密、α-Fe含量较多,其抗磨损性能较好。在高压力下,抗磨损性能受组织影响较小,搭接区与非搭接区的抗磨损性能相似。在摩擦试验过程中,磨痕浅表层产生剪切变形层,其厚度、硬度及等效应变量随压力和摩擦时长的增加而增加,其中搭接区硬度增加速率高于非搭接区。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴影
刘艳
陈文静
陈辉
关键词 多道激光熔敷搭接区与非搭接区组织摩擦性能    
Abstract:The microstructures of multi-pass laser cladding coatings exhibit periodic changes that are generally divided into overlap and non-overlap zones. The tribological properties of these two zones were studied using linear reciprocating friction tests with forces of 5 and 25 N and friction times of 150 and 300 s. This study analyzed the tribological characteristics with analyses of the microstructures and phases in the two zones. The results show the relationship between the tribological effects and the microstructure and the evolution of the microstructure during the friction process. The results show that at low pressures, the anti-wear characteristics are greatly affected by the microstructure. The overlap zone has poor wear resistance due to the coarse microstructure and less α-Fe content while the non-overlap zone with a finer microstructure and high α-Fe content has better wear resistance. At high pressures, the wear characteristics are less affected by the microstructure with the anti-wear characteristics of the overlap zone being similar to those of the non-overlap zone. The subsurface below the wear scar had a shear deformation layer after the friction test whose thickness, hardness and equivalent strain increased with increasing pressure and friction time. The overlap zone hardness increases faster than that of the non-overlap zone.
Key wordsmulti-pass laser cladding    overlap and non-overlap zones    microstructure    tribological properties
收稿日期: 2021-01-13      出版日期: 2022-03-10
基金资助:陈辉,教授,E-mail:xnrpt@swjtu.edu.cn
引用本文:   
吴影, 刘艳, 陈文静, 陈辉. 铁基激光熔敷层搭接与非搭接区摩擦性能[J]. 清华大学学报(自然科学版), 2022, 62(3): 476-481.
WU Ying, LIU Yan, CHEN Wenjing, CHEN Hui. Tribological properties of overlap and non-overlap zones in laser-clad iron-based coatings. Journal of Tsinghua University(Science and Technology), 2022, 62(3): 476-481.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2021.25.021  或          http://jst.tsinghuajournals.com/CN/Y2022/V62/I3/476
  
  
  
  
  
  
  
  
[1] 黄勇, 孙文磊, 周超军, 等. 基于激光熔覆的再制造零件可视化损伤修复区域规划[J]. 焊接学报, 2017, 38(11):51-56.HUANG Y, SUN W L, ZHOU C J, et al. Planning of repair area of visual damage on component to be remanufactured by laser cladding[J]. Transactions of the China Welding Institution, 2017, 38(11):51-56. (in Chinese)(查阅所有网上资料, 未找到对应的英文翻译, 请联系作者确认)
[2] WANG D Z, HU Q W, ZHENG Y L, et al. Study on deposition rate and laser energy efficiency of laser-induction hybrid cladding[J]. Optics & Laser Technology, 2016, 77:16-22.
[3] LI K B, LI D, LIU D Y, et al. Microstructure evolution and mechanical properties of multiple-layer laser cladding coating of 308L stainless steel[J]. Applied Surface Science, 2015, 340:143-150.
[4] ZHANG K, WANG S J, LIU W J, et al. Characterization of stainless steel parts by laser metal deposition shaping[J]. Materials & Design, 2014, 55:104-119.
[5] XU G J, KUTSUNA M, LIU Z J, et al. Characteristic behaviours of clad layer by a multi-layer laser cladding with powder mixture of Stellite-6 and tungsten carbide[J]. Surface and Coatings Technology, 2006, 201(6):3385-3392.
[6] WANG Q Y, PEI R, LIU S, et al. Microstructure and corrosion behavior of different clad zones in multi-track Ni-based laser-clad coating[J]. Surface and Coatings Technology, 2020, 402:126310.
[7] ZHANG P L, LIU X P, LU Y L, et al. Microstructure and wear behavior of Cu-Mo-Si coatings by laser cladding[J]. Applied Surface Science, 2014, 311:709-714.
[8] 赵龙志, 邓楚祥, 王震, 等. Ti含量对Fe-Ni-Ti激光熔覆层摩擦性能的影响[J]. 表面技术, 2020, 49(10):39-44, 98.ZHAO L Z, DENG C X, WANG Z, et al. Effect of Ti content on tribology properties of Fe-Ni-Ti laser cladding[J]. Surface Technology, 2020, 49(10):39-44, 98. (in Chinese)
[9] 李珂尧, 周健松, 王凌倩. B、Si元素对激光熔覆Fe-Cr-Mo-B-Si非晶涂层的非晶形成能力及其摩擦学机理的影响[J]. 表面技术, 2020, 49(8):192-202. LI K Y, ZHOU J S, WANG L Q. Effect of B and Si elements on the amorphous formation ability and tribological mechanism of Fe-Cr-Mo-B-Si amorphous coatings by laser cladding[J]. Surface Technology, 2020, 49(8):192-202. (in Chinese)
[10] 吉政甲, 勒洪允, 骆晚玥, 等.造粒氧化锆增强复合材料的摩擦学性能及优化[J]. 清华大学学报(自然科学版), 2020, 60(8):639-647.JI Z J, JIN H Y, LUO W Y, et al. Optimization of the tribological characteristics of lubricant materials with granulated ZrO2[J]. Journal of Tsinghua University (Science and Technology), 2020, 60(8):639-647. (in Chinese)
[11] LIN X, YUE T M, YANG H O, et al. Laser rapid forming of SS316L/Rene88DT graded material[J]. Materials Science and Engineering:A, 2005, 391(1-2):325-336.
[12] TURNBULL D. Kinetics of heterogeneous nucleation[J]. Journal of Chemical Physics, 1950, 18(2):198.
[13] WANG X H, SONG S L, QU S Y, et al. Characterization of in situ synthesized TiC particle reinforced Fe-based composite coatings produced by multi-pass overlapping GTAW melting process[J]. Surface and Coatings Technology, 2007, 201(12):5899-5905.
[14] VENKATARAMAN B, SUNDARARAJAN G. The sliding wear behaviour of Al-SiC particulate composites-II. The characterization of subsurface deformation and correlation with wear behaviour[J]. Acta Materialia, 1996, 44(2):461-473.
[15] WASEKAR N P, HARIDOSS P, SESHADRI S K, et al. Sliding wear behavior of nanocrystalline nickel coatings:Influence of grain size[J]. Wear, 2012, 296(1-2):536-546.
[16] MORALES E V, POZO J A, OLAYA L, et al. Remarks on the evolution and performance of the different austenite morphologies at the simulated HAZs of a 2205 duplex stainless steel[J]. Journal of Materials Research and Technology, 2019, 8(5):3936-3949.
[17] YANG Y H, YAN B, LI J, et al. The effect of large heat input on the microstructure and corrosion behaviour of simulated heat affected zone in 2205 duplex stainless steel[J]. Corrosion Science, 2011, 53(11):3756-3763.
[18] TAO P, GONG J M, WANG Y F, et al. Characterization on stress-strain behavior of ferrite and austenite in a 2205 duplex stainless steel based on nanoindentation and finite element method[J]. Results in Physics, 2018, 11:377-384.
[1] 王运宏, 胡森昶, 唐文哲, 强茂山. 工程项目组织间激励作用机理研究[J]. 清华大学学报(自然科学版), 2022, 62(12): 1972-1979.
[2] 周成龙, 陈涛. 基于小波熵的化工园区流场不稳定性[J]. 清华大学学报(自然科学版), 2021, 61(2): 135-143.
[3] 安楠, 强茂山, 郑俊萍, 温祺. 项目工作扰动下的项目型组织人力资源管理制度[J]. 清华大学学报(自然科学版), 2020, 60(11): 943-950.
[4] 刘瞿, 陈高强, 曾申波, 张帅, 潘际銮, 史清宇. 组织细化对AZ91D镁合金腐蚀性能的影响[J]. 清华大学学报(自然科学版), 2019, 59(9): 765-771.
[5] 韩飞, 周子浩, 王允. Q&P980超高强钢的循环加载性能和微观组织表征[J]. 清华大学学报(自然科学版), 2018, 58(7): 677-683.
[6] 雷振, 唐文哲, 孙洪昕, 尤日淳. 基于水电工程企业的组织网络协作与组织能力的交互关系研究[J]. 清华大学学报(自然科学版), 2017, 57(7): 738-746.
[7] 朱恩伟, 廖彬超, 赵宇. 基于语义标注的工程项目组织沟通匹配度研究[J]. 清华大学学报(自然科学版), 2016, 56(8): 844-850.
[8] 王姝力, 唐文哲, 沈文欣, 雷振. 水电开发利益相关方合作管理研究[J]. 清华大学学报(自然科学版), 2016, 56(5): 558-564.
[9] 曹梦雪, 李爱军, 方强. 基于GSOM模型的音位范畴习得建模[J]. 清华大学学报(自然科学版), 2016, 56(11): 1154-1160.
[10] 袁尚南, 强茂山, 温祺, 江汉臣. 基于模糊层次分析法的建设项目组织效能评价模型[J]. 清华大学学报(自然科学版), 2015, 55(6): 616-623.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn