Survey of intelligent and connected vehicle technologies: Architectures, functions and applications
CUI Mingyang1, HUANG Heye1, XU Qing1, WANG Jianqiang1, Takaaki SEKIGUCHI2, GENG Lu2, LI Keqiang1
1. School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China; 2. Hitachi(China) Research & Development Corporation, Beijing 100190, China
Abstract:The rapid development of intelligent and connected vehicles (ICV) in recent years promotes theoretical research in related fields from driving assistance to automated driving, from single-vehicle intelligent driving to multi-vehicle cooperative driving.ICV systems are expected to improve traffic safety and efficiency, but they face complex challenges in real traffic environment. This paper presents a survey of ICV technologies relating to 3 aspects:system architecture design, functional technology and application. This survey first introduces typical architectures of ICV, and then the development and challenges of three key functional technologies:perception, decision making and control, in consideration of driver-vehicle-road interactions in real traffic environment. Finally, this paper analyzes ICV applications in typical scenarios and the future development of related technologies.
[1] ITS JPO. ITS JPO strategy plan 2020-2025[EB/OL]. (2021-01-20). https://www.its.dot.gov/stratplan2020/index.htm. [2] ERTRAC. Connected automated driving roadmap[EB/OL]. (2019-08-03). https://connectedautomateddriving.eu/wp-content/uploads/2019/04/ERTRAC-CAD-Roadmap-03.04.2019-1.pdf. [3] 国家发展改革委. 关于印发《智能汽车创新发展战略》的通知[R]. 北京:国家发展改革委, 2020. National Development and Reform Commission of China. Notice on printing and distributing innovation and development strategy of intelligent vehicle[R]. Beijing:National Development and Reform Commission of China, 2020. (in Chinese) [4] 中华人民共和国工业和信息化部. 智能网联汽车技术路线图[R]. 北京:工信部, 2016. Ministry of Industry and Information Technology of China. Roadmap of intelligent and connected vehicle[R]. Beijing:Ministry of Industry and Information Technology of China, 2016. (in Chinese) [5] 李克强, 张书玮, 罗禹贡, 等. 智能环境友好型车辆的概念及其最新进展[J]. 汽车安全与节能学报, 2013, 4(2):109-120. LI K Q, ZHANG S W, LUO Y G, et al. Concept of intelligent environment-friendly vehicle and its recent development[J]. Journal of Automotive Safety and Engergy, 2013, 4(2):109-120. (in Chinese) [6] 解来卿. 基于结构共用的智能电动车辆传感器优选配置与节能控制[D]. 北京:清华大学, 2019. XIE L Q. Optimized selection of sensors configuration and energy-saving control for intelligent vehicle based on structure sharing[D]. Beijing:Tsinghua University, 2019. (in Chinese) [7] KELLERMAN H, NÉMRTH G, KOSTELEZKY J, et al. BMW 7 Series architecture[J]. ATZextra Worldwide, 2008, 13(8):30-37. [8] NAVALE V M, WILLIAMS K, LAGOSPIRIS A, et al. (R) evolution of E/E architectures[J]. SAE International Journal of Passenger Cars-Electronic and Electrical Systems, 2015, 8(2):282-288. [9] MISENER J A, SHLADOVER S E. PATH investigations in vehicle-roadside cooperation and safety:A foundation for safety and vehicle-infrastructure integration research[C]//2006 IEEE Intelligent Transportation Systems Conference. Toronto, Canada:IEEE, 2006:9-16. [10] WANG J, CHO J S, LEE S, et al. Real time services for future cloud computing enabled vehicle networks[C]//2011 International Conference on Wireless Communications and Signal Processing (WCSP). Nanjing, China:IEEE, 2011:1-5. [11] LEE E, LEE E K, GERLA M, et al. Vehicular cloud networking:Architecture and design principles[J]. IEEE Communications Magazine, 2014, 52(2):148-155. [12] KAIWARTYA O, ABDULLAH A H, CAO Y, et al. Internet of vehicles:Motivation, layered architecture, network model, challenges, and future aspects[J]. IEEE Access, 2016(4):5356-5373. [13] 李克强, 常雪阳, 李家文, 等. 智能网联汽车云控系统及其实现[J]. 汽车工程, 2020, 42(12):1595-1605. LI K Q, CHANG X Y, LI J W, et al. Cloud control system for intelligent and connected vehicles and its application[J]. Automotive Engineering, 2020, 42(12):1595-1605. (in Chinese) [14] 李克强, 李家文, 常雪阳, 等. 智能网联汽车云控系统原理及其典型应用[J]. 汽车安全与节能学报, 2020, 11(3):261-275. LI K Q, LI J W, CHANG X Y, et al. Principles and typical applications of cloud control system for intelligent and connected vehicles[J]. Journal of Automotive Safety and Energy, 2020, 11(3):261-275. (in Chinese) [15] AMDITIS A, ANDREONE L, PAGLE K, et al. Towards the automotive HMI of the future:Overview of the AIDE-integrated project results[J]. IEEE Transactions on Intelligent Transportation Systems, 2010, 11(3):567-578. [16] WANG J Q, HUANG H Y, LI K Q, et al. Towards the unified principles for level 5 autonomous vehicles[J/OL]. Engineering, 2021. https://doi.org/10.1016/j.eng.2020.10.018 [17] XIE S S, CHEN S T, ZHENG N N, et al. Modeling methodology of driver-vehicle-environment system dynamics in mixed driving situation[C]//2020 IEEE Intelligent Vehicles Symposium (IV). Las Vegas, USA:IEEE, 2020:1984-1991. [18] SALVUCCI D D. Modeling driver behavior in a cognitive architecture[J]. Human Factors:The Journal of the Human Factors and Ergonomics Society, 2006, 48(2):362-380. [19] GUO K, GUAN H. Modelling of driver/vehicle directional control system[J]. Vehicle System Dynamics, 1993, 22(3-4):141-184. [20] 王建强, 郑讯佳, 黄荷叶. 驾驶人驾驶决策机制遵循最小作用量原理[J]. 中国公路学报, 2020, 33(4):155-168. WANG J Q, ZHENG X J, HUANG H Y. Decision-making mechanism of the drivers following the principle of least action[J]. China Journal of Highway and Transport, 2020, 33(4):155-168. (in Chinese) [21] MARKKULA G, MADIGAN R, NATHANAEL D, et al. Defining interactions:A conceptual framework for understanding interactive behaviour in human and automated road traffic[J]. Theoretical Issues in Ergonomics Science, 2020, 21(6):728-752. [22] Safespot. Cooperative vehicles and road infrastructure for road safety[EB/OL]. 2010. http://www.safespot-eu.org. [23] REDMILL K A, KITAJIMA T, OZGUNER U. DGPS/INS integrated positioning for control of automated vehicle[C]//ITSC 2001. 2001 IEEE Intelligent Transportation Systems. Proceedings (Cat. No. 01TH8585). Oakland, USA:IEEE, 2001:172-178. [24] 张新钰, 高洪波, 赵建辉, 等. 基于深度学习的自动驾驶技术综述[J]. 清华大学学报(自然科学版), 2018, 58(4):438-444. ZHANG X Y, GAO H B, ZHAO J H, et al. Overview of deep learning intelligent driving methods[J]. Journal of Tsinghua University (Science and Technology), 2018, 58(4):438-444. (in Chinese) [25] ZHANG H, HONG X G. Recent progresses on object detection:A brief review[J]. Multimedia Tools and Applications, 2019, 78(19):27809-27847. [26] 陈文强, 熊辉, 李克强, 等. 基于深度神经网络的行人及骑车人联合检测[J]. 汽车工程, 2018, 40(6):726-732, 725. CHEN W Q, XIONG H, LI K Q, et al. Concurrent pedestrian and cyclist detection based on deep neural networks[J]. Automotive Engineering, 2018, 40(6):726-732, 725. (in Chinese) [27] FORTMANN T E, BAR-SHALOM Y, SCHEFFE M. Multi-target tracking using joint probabilistic data association[C]//19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes. Albuquerque, USA:IEEE, 1980:807-812. [28] SADEGHIAN A, ALAHI A, SAVARESE S. Tracking the untrackable:Learning to track multiple cues with long-term dependencies[C]//2017 IEEE International Conference on Computer Vision (ICCV). Venice, Italy:IEEE, 2017:300-311. [29] ZHOU X Y, KOLTUN V, KRäHENBüHL P. Tracking objects as points[J/OL]. arXiv, (2020-08-21). http://arxiv.org/abs/2004.01177. [30] MEINHARDT T, KIRILLOV A, LEAL-TAIXE L, et al. TrackFormer:Multi-object tracking with transformers[J/OL]. arXiv, (2021-04-28). http://arxiv.org/abs/2101.02702. [31] KIM S W, QIN B X, CHONG Z J, et al. Multivehicle cooperative driving using cooperative perception:Design and experimental validation[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(2):663-680. [32] VORA S, LANG A H, HELOU B, et al. PointPainting:Sequential fusion for 3D object detection[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, USA:IEEE, 2020:4603-4611. [33] CHEN X Z, MA H M, WAN J, et al. Multi-view 3D object detection network for autonomous driving[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, USA:IEEE. 2017:6526-6534. [34] CHANG X T, XU Q, LI K Q. Road network sensor deployment optimization method for road user perception[C]//Proceedings of China SAE Congress 2020. Beijing, China:China Machine Press, 2020. [35] XIE G T, GAO H B, QIAN L J, et al. Vehicle trajectory prediction by integrating physics-and maneuver-based approaches using interactive multiple models[J]. IEEE Transactions on Industrial Electronics, 2018, 65(7):5999-6008. [36] HUANG H Y, WANG J Q, FEI C, et al. A probabilistic risk assessment framework considering lane-changing behavior interaction[J]. Science China Information Sciences, 2020, 63(9):190203. [37] LI Y, LU X Y, WANG J Q, et al. Pedestrian trajectory prediction combining probabilistic reasoning and sequence learning[J]. IEEE Transactions on Intelligent Vehicles, 2020, 5(3):461-474. [38] LIU J X, XIONG H, WANG T H, et al. Probabilistic vehicle trajectory prediction via driver characteristic and intention estimation model under uncertainty[J]. Industrial Robot, 2020(10):3526-3532. [39] WU H R, WANG L K, ZHENG S F, et al. Crossing-road pedestrian trajectory prediction based on intention and behavior identification[C]//2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC). Rhodes, Greece:IEEE, 2020:1-6. [40] LI Y, ZHENG Y, MORYS B, et al. Threat assessment techniques in intelligent vehicles:A comparative survey[J]. IEEE Intelligent Transportation Systems Magazine, 2020(99):1-21. [41] WANG J Q, WU J, LI Y. The driving safety field based on driver-vehicle-road interactions[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(4):2203-2214. [42] DELLING D, GOLDBERG A V, PAJOR T, et al. Customizable route planning[C]//Proceedings of the 10th International Conference on Experimental Algorithms. Berlin, Germany:Springer-Verlag, 2011:376-387. [43] URMSON C, ANHALT J, BAGNELL D, et al. Autonomous driving in urban environments:Boss and the urban challenge[J]. Journal of Field Robotics, 2008, 25(8):425-466. [44] 王晓原, 杨新月. 基于决策树的驾驶行为决策机制研究[J]. 系统仿真学报, 2008, 20(2):415-419, 448. WANG X Y, YANG X Y. Study on decision mechanism of driving behavior based on decision tree[J]. Journal of System Simulation, 2008, 20(2):415-419, 448. (in Chinese) [45] HUBMANN C, SCHULZ J, XU G, et al. A belief state planner for interactive merge maneuvers in congested traffic[C]//21st International Conference on Intelligent Transportation Systems (ITSC). Maui, USA:IEEE, 2018:1617-1624. [46] 孙浩文. 规划控制中的优化算法, 让你坐上安全又舒适的无人车[EB/OL]. (2019-10-18). https://mp.weixin.qq.com/s/G1hpXmO5243Ld6U3c-6Rvw. SUN H W. Optimization algorithm in planning and control for developing safe and comfort automated driving vehicle.[EB/OL]. (2019-10-18). https://mp.weixin.qq.com/s/G1hpXmO5243Ld6U3c-6Rvw. (in Chinese) [47] 百度Apollo. Apollo自动驾驶入门课程第8讲-规划(下)[EB/OL]. (2018-09-20). https://mp.weixin.qq.com/s/1yA-kgS_rL4o9I4OWeI4-A. Baidu Apollo. Introductory course for automated driving 8-planning (2)[EB/OL]. (2018-09-20). https://mp.weixin.qq.com/s/1yA-kgS_rL4o9I4OWeI4-A. (in Chinese) [48] BATKOVIC I, ZANON M, ALI M, et al. Real-time constrained trajectory planning and vehicle control for proactive autonomous driving with road users[C]//2019 18th European Control Conference (ECC). Naples, Italy:IEEE, 2019:256-262. [49] SALLAB A E L, ABDOU M, PEROT E, et al. Deep reinforcement learning framework for autonomous driving[J]. Electronic Imaging, Autonomous Vehicles and Machines, 2017(19):70-76. [50] BOJARSKI M, DEL TESTA D, DWORAKOWSKI D, et al. End to end learning for self-driving cars[J/OL]. arXiv, (2016-04-25). http://arxiv.org/abs/1604.07316v1. [51] SHALEV-SHWARTZ S, SHAMMAH S, SHASHUA A. On a formal model of safe and scalable self-driving cars[J/OL]. arXiv, (2018-10-27). http://arxiv.org/abs/1708.06374. [52] LIU Y C, BUCKNALL R. A survey of formation control and motion planning of multiple unmanned vehicles[J]. Robotica, 2018, 36(7):1019-1047. [53] LUO Y G, YANG G, XU M C, et al. Cooperative lane-change maneuver for multiple automated vehicles on a highway[J]. Automotive Innovation, 2019, 2(3):157-168. [54] XU Q, CAI M C, LI K Q, et al. Coordinated formation control for intelligent and connected vehicles in multiple traffic scenarios[J]. IET Intelligent Transport Systems, 2021, 15(1):159-173. [55] XU B, BAN X J, BIAN Y G, et al. Cooperative method of traffic signal optimization and speed control of connected vehicles at isolated intersections[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(4):1390-1403. [56] BIAN Y G, LI S E, REN W, et al. Cooperation of multiple connected vehicles at unsignalized intersections:Distributed observation, optimization, and control[J]. IEEE Transactions on Industrial Electronics, 2019, 67(12):10744-10754. [57] XU B, LI S E, BIAN Y G, et al. Distributed conflict-free cooperation for multiple connected vehicles at unsignalized intersections[J]. Transportation Research Part C:Emerging Technologies, 2018, 93:322-334. [58] KONG J, PFEIFFER M, SCHILDBACH G, et al. Kinematic and dynamic vehicle models for autonomous driving control design[C]//2015 IEEE Intelligent Vehicles Symposium (IV). Seoul, Korea (South):IEEE, 2015:1094-1099. [59] LI S B, LI K Q, RAJAMANI R, et al. Model predictive multi-objective vehicular adaptive cruise control[J]. IEEE Transactions on Control Systems Technology, 2010, 19(3):556-566. [60] 百度Apollo. Apollo自动驾驶入门课程第10讲-控制(下)[EB/OL]. (2018-10-25). https://mp.weixin.qq.com/s/AnWWnD3ScSW6GhrwRGpRDw. Baidu Apollo. Introductory course for automated driving 10-control (2)[EB/OL]. (2018-10-25). https://mp.weixin.qq.com/s/AnWWnD3ScSW6GhrwRGpRDw. (in Chinese) [61] LI X Y, XU N, GUO K H, et al. An adaptive SMC controller for EVs with four IWMs handling and stability enhancement based on a stability index[J]. Vehicle System Dynamics, 2020(10):1-24. [62] ZHANG F, GONZALES J, LI S E, et al. Drift control for cornering maneuver of autonomous vehicles[J]. Mechatronics, 2018, 54:167-174. [63] 郑洋. 基于四元素构架的车辆队列动力学建模与分布式控制[D]. 北京:清华大学, 2015. ZHENG Y. Dynamic modeling and distributed control of vehicular platoon under the four-component framework[D]. Beijing:Tsinghua University, 2015. (in Chinese) [64] XU B, BAN X J, BIAN Y G, et al. V2I based cooperation between traffic signal and approaching automated vehicles[C]//2017 IEEE Intelligent Vehicles Symposium (IV). Los Angeles, USA:IEEE, 2017:1658-1664. [65] STERN R E, CUI S M, MONACHE M L D, et al. Dissipation of stop-and-go waves via control of autonomous vehicles:Field experiments[J]. Transportation Research Part C:Emerging Technologies, 2018, 89:205-221. [66] ZHENG Y, WANG J W, LI K Q. Smoothing traffic flow via control of autonomous vehicles[J]. IEEE Internet of Things Journal, 2020, 7(5):3882-3896. [67] PAN J, XU Q, LI K Q, et al. Controller design for V2X application under unreliable feedback channel[C]//2019 IEEE Intelligent Transportation Systems Conference (ITSC). Auckland, New Zealand:IEEE, 2019:2496-2502. [68] 常雪阳, 许庆, 李克强, 等. 通信时延与丢包下智能网联汽车控制性能分析[J]. 中国公路学报, 2019, 32(6):216-225. CHANG X Y, XU Q, LI K Q, et al. Analysis of intelligent and connected vehicle control under communication delay and packet loss[J]. China Journal of Highway and Transport, 2019, 32(6):216-225. (in Chinese) [69] 虞辰霏. 自适应驾驶人特性的前撞预警方法研究[D]. 北京:清华大学, 2013. YU C F. Study on forward collision warning method adaptive to driver characteristics[D]. Beijing:Tsinghua University, 2013. (in Chinese) [70] NA X X, COLE D J. Game-theoretic modeling of the steering interaction between a human driver and a vehicle collision avoidance controller[J]. IEEE Transactions on Human-Machine Systems, 2015, 45(1):25-38. [71] 孙逢春, 李克强. 电动汽车工程手册:第六卷[M]. 北京:机械工业出版社, 2019. SUN F C, LI K Q. Handbook of electric vehicle:Volume 6[M]. Beijing:China Machine Press, 2019. (in Chinese)