Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2022, Vol. 62 Issue (3): 540-548    DOI: 10.16511/j.cnki.qhdxxb.2021.26.033
  专题:吸气式发动机及空天动力技术 本期目录 | 过刊浏览 | 高级检索 |
基于Hilbert-Huang变换的液体火箭发动机涡轮泵故障分析
杨懿1,2, 陈文丽2, 王永鹏2, 唐钻坚3, 赵净4, 郭焕琳5, 郭亚男2
1. 清华大学 工业工程系, 北京 100084;
2. 中国航天推进技术研究院 北京航天试验技术研究所, 北京 100074;
3. 清华大学 软件学院, 北京 100084;
4. 清华大学 车辆运载学院, 工程管理系, 北京 100084;
5. 清华大学 土木水利学院, 建设管理系, 北京 100084
Fault analyses of liquid rocket engine turbopumps based on Hilbert-Huang transforms
YANG Yi1,2, CHEN Wenli2, WANG Yongpeng2, TANG Zuanjian3, ZHAO Jing4, GUO Huanlin5, GUO Yanan2
1. Department of Industrial Engineering, Tsinghua University, Beijing 100084, China;
2. Beijing Institute of Aerospace Test Technology, China Academy of Space Propulsion Technology, Beijing 100074, China;
3. School of Software, Tsinghua University, Beijing 100084, China;
4. Department of Engineering Management, School of Vehicle Transportation, Tsinghua University, Beijing 100084, China;
5. Department of Construction Management, School of Civil Engineering and Water Conservancy, Tsinghua University, Beijing 100084, China
全文: PDF(2308 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 涡轮泵是液体火箭发动机(liquid rocket engine,LRE)推进系统的重要组成部分。涡轮泵故障也是LRE故障的主要来源。Hilbert-Huang变换(Hilbert-Huang transform,HHT)具备良好的自适应精确分析非平稳数据的能力。通过对真实的LRE试验数据的分析表明:采用信号包络非闭合镜像延拓的方法能有效解决经验模态分解(empirical mode decomposition,EMD)分解过程中出现的端点飞翼问题;采用HHT分析方法,对本征模态函数(intrinsic mode function,IMF)进行Hilbert变换得到时频域的Hilbert能量分布频谱图以及对IMF函数进行重构后的时间-幅值图能在时域和频域内自适应精确分析液氧涡轮泵振动数据,对涡轮泵的故障进行诊断与分析。该方法在火箭发动机和其他组合件试验数据分析和故障定位中具有重要的应用和推广价值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨懿
陈文丽
王永鹏
唐钻坚
赵净
郭焕琳
郭亚男
关键词 液体火箭发动机涡轮泵Hilbert-Huang变换镜像延拓经验模态分解    
Abstract:Turbopumps are important in liquid rocket engine (LRE) propulsion systems. Turbopump failures are also the main cause of LRE failures. The Hilbert-Huang transform (HHT) has been used to adaptively and accurately analyze non-stationary data. An analysis of real LRE test data showed that the end flying wing problem in empirical mode decomposition (EMD) can be effectively solved using the signal envelope non closed image extension method. The Hilbert transform of the intrinsic mode function (IMF) using the HHT analysis gives the Hilbert energy distribution spectrum in the time and frequency domains and the time amplitude spectrum after the IMF function reconstruction. These can be used to analyze vibration data from a liquid oxygen turbopump in the time and frequency domains to diagnose turbopump faults. This method is very useful for test data analyses and fault location in rocket engines and other complex assemblies.
Key wordsliquid rocket engines    turbopump    Hilbert-Huang transform    mirror extension    empirical mode decomposition
收稿日期: 2021-04-24      出版日期: 2022-03-10
基金资助:陈文丽,高级工程师,E-mail:chenwenli1025@126.com
引用本文:   
杨懿, 陈文丽, 王永鹏, 唐钻坚, 赵净, 郭焕琳, 郭亚男. 基于Hilbert-Huang变换的液体火箭发动机涡轮泵故障分析[J]. 清华大学学报(自然科学版), 2022, 62(3): 540-548.
YANG Yi, CHEN Wenli, WANG Yongpeng, TANG Zuanjian, ZHAO Jing, GUO Huanlin, GUO Yanan. Fault analyses of liquid rocket engine turbopumps based on Hilbert-Huang transforms. Journal of Tsinghua University(Science and Technology), 2022, 62(3): 540-548.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2021.26.033  或          http://jst.tsinghuajournals.com/CN/Y2022/V62/I3/540
  
  
  
  
  
  
  
  
  
  
  
  
[1] 郭霄峰, 李耀华, 陈鸿彦, 等. 液体火箭发动机试验[M]. 北京:中国宇航出版社, 1990.GUO X F, LI Y H, CHEN H Y, et al. Liquid rocket engine test[M]. Beijing:China Aerospace Press, 1990. (in Chinese)
[2] 窦唯, 刘占生. 液体火箭发动机涡轮泵故障诊断的新方法[J]. 推进技术, 2011, 32(2):1-2.DOU W, LIU Z S. A new fault diagnosis method for turbopump of liquid rocket engine[J]. Journal of Propulsion Technology, 2011, 32(2):1-2. (in Chinese)
[3] 中国人民解放军总装备部军事训练教材编辑工作委员会. 运载火箭推进系统[M]. 北京:国防工业出版社, 2002.Editorial Committee of military training materials of General Equipment Department of PLA. Launch Vehicle Propulsion System[M]. Beijing:National Defense Industry Press, 2002. (in Chinese)
[4] 于潇, 廖明夫, 赵冲冲. 液体火箭发动机涡轮泵状态监测与故障诊断系统研究[J]. 导弹与航天运载技术, 2002, 258(4):55-56.YU X, LIAO M F, ZHAO C C. Condition monitoring and fault diagnosing system of liquid propellant rocket engine turbopump[J]. Missiles and Space Vehicles, 2002, 258(4):55-56. (in Chinese)
[5] 杨懿, 李薇. 液体火箭发动机启动段振动信号的小波去噪[J]. 火箭推进, 2012, 38(5):77-78.YANG Y, LI W. Wavelet transform based denoising of vibration signal generated in ignition shock section of liquid rocket engine[J]. Journal of Propulsion, 2012, 38(5):77-78. (in Chinese)
[6] 郭贵喜, 王振华, 王洪祥, 等. 基于HHT的航空发动机气动失稳信号时频分析方法[J]. 航空发动机, 2013, 39(3):62-66.GUO G X, WANG Z H, WANG H X, et al. Time-frequency analysis method of aeroengine aerodynamic instability signal based on Hilbert-Huang transform[J]. Aeroengine, 2013, 39(3):62-66. (in Chinese)
[7] 马栋梁, 周涛, 冯祥, 等. 超临界水自然循环流量信号降噪分析[J]. 核动力工程, 2019, 40(2):155-160.MA D L, ZHOU T, FENG X, et al. Analysis of signal noise of supercritical water natural circulation flow[J]. Nuclear Power Engineering, 2019, 40(2):155-160. (in Chinese)
[8] 郭洪涛, 徐来武, 吴继飞, 等. 非平稳脉动压力数据的SPWVD时频分析技术研究[J]. 实验流体力学. 2011, 25(5):40-44. GUO H T, XU L W, WU J F, et al. Investigation on SPWVD time-frequency analysis technique for unstationary fluctuating pressure data[J]. Journal of Experiments in Fluid Mechanics. 2011, 25(5):40-44. (in Chinese)
[9] HUANG N E. The Hilbert-Huang transform and its applications[M]. Singapore:World Scientific, 2005.
[10] 钟飞, 张伟, 钟约先. Hilbert-Huang变换去除可控振源谐波畸变[J]. 清华大学学报(自然科学版), 2011, 51(6):862-867.ZHONG F, ZHANG W, ZHONG Y X. Removal of harmonic distortions in vibroseis data using the Hilbert-Huang transformation[J]. Journal of Tsinghua University (Science and Technology), 2011, 51(6):862-867. (in Chinese)
[11] 薛志成, 裴强, 胡波. 基于HHT边际移动谱的结构参数时变特性识别[J]. 清华大学学报(自然科学版), 2013, 53(8):1132-1138.XUE Z C, PEI Q, HU B. Time-varying identification of structural modal parameters based on HHT marginal shift spectrum[J].Journal of Tsinghua University (Science and Technology), 2013, 53(8):1132-1138. (in Chinese)
[12] 韦娟, 顾兴权, 宁方立. Hilbert时频谱特征提取方法[J]. 华中科技大学学报(自然科学版), 2021, 49(1):50-54.WEI J, GU X Q, NING F L. Hilbert time-frequency spectrum feature extraction method[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2021, 49(1):50-54. (in Chinese)
[13] 江国进, 曹亮. 基于HHT方法的水下爆炸声信号时频特性分析[J]. 舰船电子工程, 2020, 40(9):153-156.JANG G J, CAO L. Time-frequency characteristics of underwater explosion signal based on Hilbert-huang transform[J]. Ship Electronic Engineering, 2020, 40(9):153-156. (in Chinese)
[14] 杨大春. 基于集合经验模态分解的滚动轴承振动信号希尔伯特谱分析方法[J]. 机械制造, 2019, 57(8):29-32.YANG D C. Hilbert spectrum analysis method of rolling bearing vibration signal based on ensemble empirical mode decomposition[J]. Mechanical Manufacturing, 2019, 57(8):29-32. (in Chinese)
[15] 胡寅, 梅月兰. 基于HHT的滚动轴承故障分析实验设计[J]. 电子测量技术, 2021, 44(3):60-64.HU Y, MEI Y L. Experimental design of rolling bearing fault analysis based on HHT[J]. Electronic Measurement Technology, 2021, 44(3):60-64. (in Chinese)
[16] 张景科, 李凯, 张瀚, 等. 基于HHT信号分析的GFRP锚杆锚固质量无损检测方法研究[J]. 岩石力学与工程学报, 2021, 40(6):1-10.ZHANG J K, LI K, ZHANG H, et al. Research on Non-Destructive Testing method of GFRP bolt anchorage based on HHT signal analysis[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(6):1-10. (in Chinese)
[17] 李舜酩, 李香莲. 振动信号的现代分析技术与应用[M]. 北京:国防工业出版社, 2008.LI S M, LI X L. Modern analysis technology and application of vibration signal[M]. Beijing:National Defense Industry Press, 2008. (in Chinese)
[18] 朱可恒, 宋希庚, 薛冬新. 希尔伯特振动分解在滚动轴承故障诊断中应用[J]. 振动与冲击, 2014, 33(14):160-164.ZHU K H, SONG X G, XUE D X. Roller bearing fault diagnosis using Hilbert vibration decomposition[J]. Journal of Vibration and Shock, 2014, 33(14):160-164. (in Chinese)
[19] 符娆, 张群岩, 赵述元. 航空发动机试飞中转静子碰摩故障信号处理的希尔伯特-黄变换(HHT)方法[J]. 振动与噪声控制, 2012, 32(2):123-126.FU R, ZHANG Q Y, ZHAO S Y. Signal processing of rubbing trouble between rotor and stator of aeroengines in flight-test using Hilbert-Huang transform[J]. Vibration and Noise Control, 2012, 32(2):123-126. (in Chinese)
[20] 郝大海. 基于Hilbert-Huang变换的发动机振动信号特征提取[J]. 兵工自动化, 2007, 26(12):81-83.HAO D H. Feature extraction from vibration signals of engine based on Hilbert-Huang transformation[J]. Ordnance Automation, 2007, 26(12):81-83. (in Chinese)
[21] 范开国, 梁建军, 韦道明, 等. EMD端点延拓新方法SAR遥感图像实例应用[J]. 地球物理学进展, 2020, 11(9):1-8.FAN K G, IANG J J, WEI D M, et al.Application of a new boundary process method for Empirical Mode Decomposition in SAR image[J]. Progress in Geophysics, 2020, 11(9):1-8. (in Chinese)
[22] 李艳军. 新一代大推力液体火箭发动机故障检测与诊断关键技术研究[D]. 长沙:国防科学技术大学, 2014.LI Y J. Study on key techniques of fault detection and diagnosis for new generation large-scale liquid-propellant rocket engines[D]. Changsha:National University of Defense Technology, 2014. (in Chinese)
[23] 谢光军. 液体火箭发动机涡轮泵实时故障检测技术及系统研究[D]. 长沙:国防科学技术大学, 2006.XIE G J. Research on real-time fault detection technology and system for liquid rocket engine turbopump[D]. Changsha:National University of Defense Technology, 2006. (in Chinese)
[24] 王慧, 王桁, 王家兴, 等. 液体火箭发动机涡轮泵转子系统干摩擦故障特征分析[J]. 导弹与航天运载技术, 2001, 253(5):10-14.WANG H, WANG H, WANG J X, et al. Characteristic analysis on fault induced by rubbing of LRE turbopump rotor system[J].Missiles and Space Vehicles, 2001, 253(5):10-14. (in Chinese)
[1] 汪伟, 杨开明, 朱煜, 钱宇阳. 基于经验模态分解法和摆动脚参数的行走速度估计[J]. 清华大学学报(自然科学版), 2021, 61(10): 1152-1158.
[2] 王伟龙, 张会强. 预混C2H4/N2O推力室喷注面板热反侵着火现象数值模拟[J]. 清华大学学报(自然科学版), 2020, 60(3): 206-211.
[3] 甘振业, 陈浩, 杨鸿武. 结合EEMD与K-SVD字典训练的语音增强算法[J]. 清华大学学报(自然科学版), 2017, 57(3): 286-292.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn