Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2022, Vol. 62 Issue (3): 555-561    DOI: 10.16511/j.cnki.qhdxxb.2021.26.029
  专题:吸气式发动机及空天动力技术 本期目录 | 过刊浏览 | 高级检索 |
内转式TBCC组合动力进气道设计方法研究进展
左逢源
西安交通大学 航天航空学院, 机械结构强度与振动国家重点实验室, 西安 710049
Inward-turning TBCC intake design
ZUO Fengyuan
State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China
全文: PDF(9200 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 吸气式推进系统是实现高超声速飞行的基石,随着对宽Ma范围内高速飞行器的需求日益迫切,涡轮基组合循环(turbine based combined cycle,TBCC)发动机等已成为国内外研究的焦点,而高效压缩的进气系统是其重要组成部分和关键技术之一。该文主要分析了宽Ma范围内高速飞行器对进气系统的特殊要求,回顾了国内外关于内转式TBCC进气道的研究进展,重点介绍了以TriJet为代表的内转式TBCC进气系统的设计方法。总结了内转式TBCC进气道所面临的主要挑战,着重介绍了这类进气道面临的独特的锥面激波/边界层干扰问题,可为后续的研究工作提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
左逢源
关键词 高超声速涡轮基组合循环动力超燃冲压内转式进气道    
Abstract:The increasing demand for air-breathing propulsion systems in hypersonic aircraft that can operate over a wide Mach number range has led to development of the turbine based combined cycle (TBCC). The high-performance compressed air intake system is a key component of these systems. This study analyzed the requirements for air intake systems of hypersonic aircraft operating over a wide Mach number range. This paper reviews research on the TBCC intake design, especially the internal rotating TBCC air intake system presented by TriJet. This review then summarizes the main challenges facing the development of the TBCC intake and the unique conical shock wave/boundary layer interactions in this intake to provide references for subsequent research work.
Key wordshypersonic    turbine based combined cycle    scramjet    inward-turning intake
收稿日期: 2021-03-13      出版日期: 2022-03-10
引用本文:   
左逢源. 内转式TBCC组合动力进气道设计方法研究进展[J]. 清华大学学报(自然科学版), 2022, 62(3): 555-561.
ZUO Fengyuan. Inward-turning TBCC intake design. Journal of Tsinghua University(Science and Technology), 2022, 62(3): 555-561.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2021.26.029  或          http://jst.tsinghuajournals.com/CN/Y2022/V62/I3/555
  
  
  
  
  
  
  
  
[1] ZUO F Y, MöLDER S. Hypersonic wavecatcher intakes and variable-geometry turbine based combined cycle engines[J]. Progress in Aerospace Sciences, 2019(106):108-144.
[2] SZIROCZAK D, SMITH H. A review of design issues specific to hypersonic flight vehicles[J]. Progress in Aerospace Sciences, 2016(84):1-28.
[3] SMART M K. How much compression should a scramjet inlet do?[J]. AIAA Journal, 2012, 50(3):610-619.
[4] POWELL O A, EDWARDS J T, NORRIS R B, et al. Development of hydrocarbon-fueled scramjet engines:The hypersonic technology (HyTech) program[J]. Journal of Propulsion and Power, 2001, 17(6):1170-1176.
[5] ZUO F Y, HUANG G P. Numerical investigation of bleeding control method on section-controllable wavecatcher intakes[J]. Acta Astronautica, 2018(151):572-584.
[6] VAN WIE D M, AULT D A. Internal flowfield characteristics of a scramjet inlet at Mach 10[J]. Journal of Propulsion and Power, 1996, 12(1):158-164.
[7] ZUO F Y, HUANG G P, XIA C. Bleeding control for improving internal waverider inlet self-starting ability[J]. International Journal of Turbo & Jet-Engines, 2019, 36(1):51-60.
[8] ZUO F Y, HUANG G P. A preliminary overview analysis on the internal waverider inlets for ramjet[C]//21st AIAA International Space Planes and Hypersonics Technologies Conference. Xiamen, China:AIAA Meeting Paper, 2017.
[9] VAN WIE D M. Scramjet inlets[M]//MURTHY S N B, CURRAN E T. Scramjet propulsion. New York, USA:American Institute of Aeronautics and Astronautics, 2001:447-511.
[10] BILLIG F S, KOTHARI A P. Streamline tracing:Technique for designing hypersonic vehicles[J]. Journal of Propulsion and Power, 2000, 16(3):465-471.
[11] BULMAN M J, SIEBENHAAR A. The rebirth of round hypersonic propulsion[C]//42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Sacramento, USA:AIAA, 2006:6825-6836.
[12] ZUO F Y, MÖLDER S, CHEN G. Performance of wavecatcher intakes at angles of attack and sideslip[J]. Chinese Journal of Aeronautics, 2021, 34(7):244-256.
[13] ZUO F Y, HUANG G P, YU Z H, et al. Investigation of the self-starting ability of an internal waverider inlet for ramjet[C]//51st AIAA/SAE/ASEE Joint Propulsion Conference. Orlando, USA:AIAA, 2015.
[14] ZUO F Y, HUANG G P, HUANG H H, et al. Analyzing the flow pattern of inward turning inlet combined with variable-geometry[C]//52nd AIAA/SAE/ASEE Joint Propulsion Conference. Salt Lake City, USA:AIAA, 2016.
[15] WALKER S H, RODGERS F. Falcon hypersonic technology overview[C]//AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies Conference. Capua, Italy:AIAA, 2005:510-516.
[16] WALKER S, TANG M, MORRIS S, et al. Falcon HTV-3X-A reusable hypersonic test bed[C]//15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Dayton, USA:AIAA, 2008.
[17] WALKER S, TANG M, MAMPLATA C. TBCC propulsion for a Mach 6 hypersonic airplane[C]//16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference. Bremen, Germany:AIAA, 2009.
[18] LOCKHEED CORP. Integrated inward turning inlets and nozzles for hypersonic air vehicles:7866599B2[P]. 2011-01-11.
[19] WALKER S H, SHERK J, SHELL D, et al. The DARPA/AF Falcon program:The hypersonic technology vehicle #2(HTV-2) flight demonstration phase[C]//15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Dayton, USA:AIAA, 2008.
[20] SIEBENHAAR A, BOGAR T J. Integration and vehicle performance assessment of the aerojet "TriJet" combined-cycle engine[C]//16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference. Bremen, Germany:AIAA, 2009.
[21] AEROJET GENERAL CO. Integrated air inlet system for multi-propulsion aircraft engines:7216474B2[P]. 2007-05-15.
[22] AEROJET GENERAL CO. Combined cycle integrated combustor and nozzle system:7886516B2[P]. 2011-02-15.
[23] AEROJET GENERAL CO. Core burning for scramjet engines:7797943B2[P]. 2010-09-21.
[24] BULMAN M J, SIEBENHAAR A. Combined cycle propulsion:Aerojet innovations for practical hypersonic vehicles[C]//17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference 2011. San Francisco, USA:AIAA, 2011.
[25] O'BRIEN T F, DAVIS D O, COLVILLE J R. The advanced combined-cycle integrated inlet test program-test results[C]//15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Dayton, USA:AIAA, 2008.
[26] 左逢源, 黄国平, 陈杰, 等. 基于内乘波概念的TBCC进气道过渡模态研究[J]. 工程热物理学报, 2015, 36(2):274-278.ZUO F Y, HUANG, G P, CHEN J, et al. Based on the concept of waverider TBCC inlet mode transition study[J]. Journal of Engineering Thermophysics, 2015, 36(2):274-278.(in Chinese)
[27] ZUO F Y, HUANG G P, XIA C. Investigation of internal-waverider-inlet flow pattern integrated with variable-geometry for TBCC[J]. Aerospace Science and Technology, 2016(59):69-77.
[28] HUANG H H, HUANG G P, ZUO F Y, et al. CFD simulation of TBCC inlet based on internal waverider concept[C]//21st AIAA International Space Planes and Hypersonics Technologies Conference. Xiamen, China:AIAA, 2017.
[29] HUANG H H, HUANG G P, ZUO F Y, et al. Research on a novel internal waverider TBCC inlet for ramjet mode[C]//52nd AIAA/SAE/ASEE Joint Propulsion Conference. Salt Lake City, USA:AIAA, 2016.
[30] ZUO F Y, MEMMOLO A. Investigation of conical shock wave/boundary layer interaction in axisymmetric internal flow[J]. Aerospace Science and Technology, 2020(106):106106.
[31] ZUO F Y, MEMMOLO A, PIROZZOLI S. Reynolds-averaged numerical simulations of conical shock-wave/boundary-layer interactions[J]. AIAA Journal, 2021, 59(5):1645-1659.
[32] ZUO F Y, MEMMOLO A, PIROZZOLI S. Reynolds- averaged numerical simulations of conical shock-wave/boundary-layer interactions[J]. AIAA Journal, 2021, 59(5):1645-1659.
[32] WAGNER J L, YUCEIL K B, VALDIVIA A, et al. Experimental investigation of unstart in an inlet/isolator model in Mach 5 flow[J]. AIAA Journal, 2009, 47(6):1528-1542.
[33] FLOCK A K, GVLHAN A. Experimental investigation of the starting behavior of a three-dimensional scramjet intake[J]. AIAA Journal, 2015, 53(9):2686-2693.
[34] PIROZZOLI S, BERNARDINI M, GRASSO F. Direct numerical simulation of transonic shock/boundary layer interaction under conditions of incipient separation[J]. Journal of Fluid Mechanics, 2010, 657:361-393.
[35] PIROZZOLI S, BERNARDINI M. Direct numerical simulation database for impinging shock wave/turbulent boundary-layer interaction[J]. AIAA Journal, 2011, 49(6):1307-1312.
[36] HAO J A, WEN C Y. Hypersonic flow over spherically blunted double cones[J]. Journal of Fluid Mechanics, 2020, 896:A26.
[37] ANDERSON JR J D. Hypersonic and high-temperature gas dynamics[M]. Reston:American Institute of Aeronautics and Astronautics, 2006.
[38] ZUO F Y, HU S L. Thermochemical non-equilibrium effects on aerothermodynamic prediction of laminar double-cone flow[J]. Acta Astronautica, 2021, 182:179-188.
[39] KIANVASHRAD N, KNIGHT D D. Nonequilibrium effects on prediction of aerothermodynamic loading for a double cone[J]. AIAA Journal, 2019, 57(7):2946-2963.
[1] 何鑫, 薛瑞, 郑星, 张骞, 龚建良. 边界层燃烧在超燃冲压发动机内的摩擦减阻特性[J]. 清华大学学报(自然科学版), 2022, 62(3): 562-572.
[2] 宋佳, 石若凌, 郭小红, 刘杨. 基于核极限学习机的飞行器故障诊断方法[J]. 清华大学学报(自然科学版), 2020, 60(10): 795-803.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn