Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2022, Vol. 62 Issue (3): 562-572    DOI: 10.16511/j.cnki.qhdxxb.2021.26.009
  专题:吸气式发动机及空天动力技术 本期目录 | 过刊浏览 | 高级检索 |
边界层燃烧在超燃冲压发动机内的摩擦减阻特性
何鑫1, 薛瑞1, 郑星1, 张骞1, 龚建良2
1. 西安交通大学 航天航空学院, 机械结构强度与振动国家重点实验室, 西安 710049;
2. 西安近代化学研究所, 西安 710065
Skin friction reduction for boundary layer combustion in a scramjet engine
HE Xin1, XUE Rui1, ZHENG Xing1, ZHANG Qian1, GONG Jianliang2
1. State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi'an Jiaotong University, Xi'an 710049, China;
2. Xi'an Modern Chemistry Research Institute, Xi'an 710065, China
全文: PDF(9574 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 以模型超燃冲压发动机为研究对象,该文设计了一种边界层燃烧装置,基于考虑边界层转捩的四方程Transition SST湍流模型,化学反应动力学模型采用9组分27步反应的氢气/氧气反应模型,对边界层燃烧在超燃冲压发动机内的摩擦减阻特性进行数值模拟研究。结果表明:引入边界层燃烧可以使超燃冲压发动机燃烧室壁面摩擦阻力得到大幅度降低。发动机下壁面采用扩张型面会抑制燃烧室内的边界层燃烧,不利于燃烧室内的壁面摩擦减阻,但尾喷管段的减阻效果更为明显;而当发动机流道下壁面向主流收缩时会增强燃烧室内的边界层燃烧,进而增大燃烧室内的减阻效果,但不利于尾喷管段的减阻,若能保持燃烧室下游的边界层燃烧火焰,采用收缩型面构型的发动机减阻效果最优。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
何鑫
薛瑞
郑星
张骞
龚建良
关键词 超燃冲压发动机边界层燃烧摩擦减阻数值模拟    
Abstract:The skin friction characteristics for boundary layer combustion in a scramjet engine were studied numerically by analyzing the effect of adding a boundary layer combustion device and for changes in the scramjet exhaust nozzle lower wall inclination angle. The combustion was modeled using a hydrogen-air kinetics model consisting of 9 species and 27 reaction steps with the flow modeled. The turbulence was modeled using the four-equation Transition SST (shear stress transport) turbulence model which takes account the boundary layer transition to accurately predict the hydrogen combustion in the boundary layer with the hydrogen injected from the boundary layer combustion device. The investigation of the effects of various exhaust nozzle lower wall inclination angles shows that the flow expansion inhibits boundary layer combustion in the combustion chamber while dramatically reducing the skin friction in the exhaust nozzle. In contrast, a contracting exhaust nozzle enhances the boundary layer combustion in the combustion chamber while increasing the flow resistance. However, the boundary layer flame is extinguished before it propagates into the nozzle section, which further increases the skin friction. Thus, if the boundary layer combustion flame can be spread into and stabilized in the nozzle section, the scramjet with a contraction profile will exhibit superior skin friction reductions.
Key wordsscramjet engine    boundary layer combustion    skin friction resistance reduction    numerical simulation
收稿日期: 2020-11-25      出版日期: 2022-03-10
基金资助:薛瑞,副教授,E-mail:ruixue@xjtu.deu.cn
引用本文:   
何鑫, 薛瑞, 郑星, 张骞, 龚建良. 边界层燃烧在超燃冲压发动机内的摩擦减阻特性[J]. 清华大学学报(自然科学版), 2022, 62(3): 562-572.
HE Xin, XUE Rui, ZHENG Xing, ZHANG Qian, GONG Jianliang. Skin friction reduction for boundary layer combustion in a scramjet engine. Journal of Tsinghua University(Science and Technology), 2022, 62(3): 562-572.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2021.26.009  或          http://jst.tsinghuajournals.com/CN/Y2022/V62/I3/562
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] ANDERSON J D J. Hypersonic and high-temperature gas dynamics[M]. 2nd ed. Reston:American Institute of Aeronautics and Astronautics, 2006.
[2] PAULL A, STALKER R, MEE D. Experiments on supersonic combustion ramjet propulsion in a shock tunnel[J]. Journal of Fluid Mechanics, 1999, 296(1):159-183.
[3] 郭杰, 耿兴国, 高鹏, 等. 边界层控制法减阻技术研究进展[J]. 鱼雷技术, 2008, 16(1):1-6.GUO J, GENG X G, GAO P, et al. Recent development of dag reduction technologies via boundary layer control[J]. Torpedo Technology, 2008, 16(1):1-6. (in Chinese)
[4] 杨弘炜, 高歌. 一种新型边界层控制技术应用于湍流减阻的实验研究[J]. 航空学报, 1997, 18(4):72-84.YANG H W, GAO G. Experimental study for turbulent drag reduction using a novel boundary control technique[J]. Acta Aeronautica et Astronautica Sinica, 1997, 18(4):72-74. (in Chinese)
[5] 徐中, 徐宇, 王磊, 等. 凹坑形表面在空气介质中的减阻性能研究[J]. 摩擦学学报, 2009, 29(6):579-583.XU Z, XU Y, WANG L, et al. Drag reduction effect of dimple concave surface in air[J]. Tribology, 2009, 29(6):579-583. (in Chinese)
[6] 孙宗祥. 等离子体减阻技术的研究进展[J]. 力学进展, 2003, 33(1):87-94.SUN Z X. Progress in plasma assisted drag reduction technology[J]. Advances in Mechanics, 2003, 33(1):87-94. (in Chinese)
[7] 罗金玲, 徐敏, 戴梧叶, 等. 高速飞行器等离子体减阻的数值模拟研究[J]. 宇航学报, 2009, 30(1):119-122.LUO J L, XU M, DAI W Y, et al. Numerical simulation investigation on plasma injection for drag reduction of hypersonic vehicle[J]. Journal of Astronautics, 2009, 30(1):119-122. (in Chinese)
[8] CORKE T C, THOMAS F O. Active and passive turbulent boundary-layer drag reduction[J]. AIAA Journal, 2018, 56(10):3835-3847.
[9] 王宇天, 张百灵, 李益文, 等. 等离子体激励控制激波与边界层干扰流动分离数值研究[J]. 航空动力学报, 2018, 33(2):364-371.WANG Y T, ZHANG B L, LI Y W, et al. Numerical investigation for control of shock wave and boundary layer interactions flow separation with plasma actuation[J]. Journal of Aerospace Power, 2018, 33(2):364-371. (in Chinese)
[10] STALKER R J. Control of hypersonic turbulent skin friction by boundary-layer combustion of hydrogen[J]. Journal of Spacecraft and Rockets, 2005, 45(4):577-587.
[11] CLARK R J, SHRESTHA S O B. Boundary layer combustion for skin friction drag reduction in scramjet combustors[C]//50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Cleveland, USA:AIAA, 2014.
[12] ROWAN S, PAULL A. Viscous drag reduction in a scramjet combustor with film cooling[C]//10th AIAA/NAL-NASDA-ISAS International Space Planes and Hypersonic Systems and Technologies Conference. Kyoto, Japan:AIAA, 2001.
[13] SURAWEERA M V. Reduction of skin friction drag in hypersonic flow by boundary layer[D]. Brisbane:University of Queensland, 2006.
[14] LARIN O B, LEVIN V A. Flow in a turbulent supersonic boundary layer with a heat source[J]. Technical Physics Letters, 1999, 25(4):265-266.
[15] PUDSEY A S, BOYCE R R, WHEATLEY V. Hypersonic viscous drag reduction via multiporthole injector arrays[J]. Journal of Propulsion and Power, 2013, 29(5):1087-1096.
[16] ZHANG P, XU J L, YU Y, et al. Effect of adverse pressure gradient on supersonic compressible boundary layer combustion[J]. Aerospace Science and Technology, 2019, 88:380-394.
[17] 王帅, 何国强, 秦飞, 等. 超声速内流道摩擦阻力分析及减阻技术研究[J]. 航空动力学报, 2019, 34(4):908-919.WANG S, HE G Q, QIN F, et al. Research on skin-frictiondrag and drag reduction technics in a supersonic inner flow path[J]. Journal of Aerospace Power, 2019, 34(4):908-919. (in Chinese)
[18] GAO Z X, JIANG C W, PAN S W, et al. Combustion heat-release effects on supersonic compressible turbulent boundary layers[J]. AIAA Journal, 2015, 53(7):1949-1968.
[19] YU K, XU J, LIU S, et al. Starting characteristics and phenomenon of a supersonic wind tunnel coupled with inlet model[J]. Aerospace Science and Technology, 2018, 77:626-37.
[20] QIN Q H, XU J L, GUO S. Fluid-thermal analysis of aerodynamic heating over spiked blunt body configurations[J]. Acta Astronautica, 2017, 132:230-242.
[21] MARINOV N M, WESTBROOK C K, PITZ W J. Detailed and global chemical kinetics model for hydrogen[C]//8th International Symposium on Transport Properties. Washington, DC, USA:USDOE, 1995.
[22] XUE R, ZHENG X, YUE L J, et al. Study of shock train/flame interaction and skin-friction reduction by hydrogen combustion in compressible boundary layer[J]. International Journal of Hydrogen Energy, 2020, 45(31):15683-15696.
[23] XUE R, ZHENG X, YUE L J, et al. Numerical study on supersonic boundary-layer transition and wall skin friction reduction induced by fuel wall-jet combustion[J]. Acta Astronautica, 2020, 174:11-23.
[24] MCRAE C, JOHANSEN C T, DANEHY P M, et al. OH PLIF visualization of the UVA supersonic combustion experiment:Configuration A[C]//51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Grapevine, USA:AIAA, 2013.
[1] 李玉, 王相钦, 闵敬春. 蛇形管内燃油变物性流动换热特性数值模拟[J]. 清华大学学报(自然科学版), 2024, 64(2): 337-345.
[2] 石云姣, 赵宁波, 郑洪涛. 进气畸变对重型燃气轮机燃压缸流动特性影响[J]. 清华大学学报(自然科学版), 2024, 64(1): 90-98.
[3] 李聪健, 高航, 刘奕. 基于数值模拟和机器学习的风场快速重构方法[J]. 清华大学学报(自然科学版), 2023, 63(6): 882-887.
[4] 钟茂华, 胡鹏, 陈俊沣, 程辉航, 吴乐, 魏旋. 顶部多点竖向排烟下地铁隧道烟气控制研究[J]. 清华大学学报(自然科学版), 2023, 63(5): 754-764.
[5] 孙继昊, 罗绍文, 赵宁波, 杨慧玲, 郑洪涛. 甲烷/空气燃烧NOx排放数值模型对比[J]. 清华大学学报(自然科学版), 2023, 63(4): 623-632.
[6] 孙逸凡, 朱炜, 吴玉新, 祁海鹰. Gao-Yong湍流模型对边界层转捩的适用性研究[J]. 清华大学学报(自然科学版), 2023, 63(4): 642-648.
[7] 高畅, 李岩军, 余莉, 聂舜臣. 帆片结构张满度变化对环帆伞气动性能的影响[J]. 清华大学学报(自然科学版), 2023, 63(3): 322-329.
[8] 陈冠华, 陈雅倩, 周宁, 贾贺, 荣伟, 薛晓鹏. 具有横向运动能力的圆形伞的设计[J]. 清华大学学报(自然科学版), 2023, 63(3): 338-347.
[9] 闫慧慧, 李昊昱, 周伯豪, 张煜洲, 兰旭东. 离心压气机性能影响机理研究及优化[J]. 清华大学学报(自然科学版), 2023, 63(10): 1672-1685.
[10] 高群翔, 孙琦, 彭威, 张平, 赵钢. 碘硫循环制氢中硫酸分解的全过程模拟方法[J]. 清华大学学报(自然科学版), 2023, 63(1): 24-32.
[11] 史琳, 许强辉. 稠油注空气开发技术的基础研究与应用[J]. 清华大学学报(自然科学版), 2022, 62(4): 722-734.
[12] 闫慧慧, 周伯豪, 李豪, 张煜洲, 兰旭东. 基于ANSYS的涡轴发动机压气机设计[J]. 清华大学学报(自然科学版), 2022, 62(3): 549-554,580.
[13] 张旨晗, 刘辉, 吕振雷, 侯岩松, 孙立风, 王石, 吴朝霞, 刘亚强. 大动物SPECT系统设计与数值模拟[J]. 清华大学学报(自然科学版), 2022, 62(12): 1875-1883.
[14] 韩亚东, 谭磊, 刘亚斌. 基于可控载荷的混流泵叶轮设计及试验研究[J]. 清华大学学报(自然科学版), 2022, 62(12): 1930-1937.
[15] 陈猛, 陈昭, 刘荣正, 刘兵, 邵友林, 唐亚平, 刘马林. 流化床-化学气相沉积颗粒包覆过程数值模拟[J]. 清华大学学报(自然科学版), 2022, 62(10): 1645-1659.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn