Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2022, Vol. 62 Issue (3): 627-632    DOI: 10.16511/j.cnki.qhdxxb.2021.22.033
  物理与工程物理 本期目录 | 过刊浏览 | 高级检索 |
利用自旋回波小角中子散射技术分析胶体系统的结构
宋璟, 孙光爱
中国工程物理研究院 核物理与化学研究所, 中子物理学重点实验室, 绵阳 621999
Analysis of colloidal system structures using spin-echo small-angle neutron scattering
SONG Jing, SUN Guang'ai
Key Laboratory of Neutron Physics, Institute of Nuclear Physics and Chemistry, CAEP, Mianyang 621999, China
全文: PDF(2336 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 该文总结了中子表征技术中自旋回波小角中子散射(SESANS)的基本理论分析方法,并讨论了其在分析胶体系统结构中的应用。通过对实空间的密度涨落关联函数进行Abel变换得到SESANS的空间关联函数。进一步分析了球形粒子不同多分散度对SESANS空间自关联函数的影响,SESANS空间结构关联函数则通过引入热力学自洽的闭合关系求解Ornstein-Zernike方程对分布函数进行计算。将SESANS的理论计算应用于同时具有短程吸引和长程排斥相互作用势的胶体系统,结果显示:与传统小角散射相比,SESANS理论计算结果更加直观地反映了系统随着体积分数增加由分散相进入逾渗相的转变。SESANS作为一种能在实空间对材料进行表征的散射技术,可以有效地揭示胶体系统的结构和相变。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋璟
孙光爱
关键词 中子自旋回波小角散射胶体空间结构关联函数    
Abstract:This work summarizes the theory for analyzing spin-echo small-angle neutron scattering (SESANS) data, especially for colloids. The SESANS spatial correlation function is calculated by taking the Abel transform of the density fluctuation correlation function in real space. This study also analyzes the spherical particle polydispersity effect on the SESANS spatial auto-correlation function. Thermodynamic self-consistent closure is used to solve the Ornstein-Zernike function to calculate the SESANS spatial structural correlation function. The SESANS theory for colloids with both short-range attraction and long-range repulsion shows that, unlike with traditional small angle scattering, SESANS can conveniently study the phase transition from the dispersed state to the percolation state as the colloid volume fraction increases. SESANS can characterize materials in real space to effectively reveal the structure and phase transition of colloidal systems.
Key wordsneutron spin-echo    small-angle scattering    colloidal systems    spatial structural correlation function
收稿日期: 2021-03-15      出版日期: 2022-03-10
基金资助:孙光爱,研究员,E-mail:guangaisun_80@163.com
引用本文:   
宋璟, 孙光爱. 利用自旋回波小角中子散射技术分析胶体系统的结构[J]. 清华大学学报(自然科学版), 2022, 62(3): 627-632.
SONG Jing, SUN Guang'ai. Analysis of colloidal system structures using spin-echo small-angle neutron scattering. Journal of Tsinghua University(Science and Technology), 2022, 62(3): 627-632.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2021.22.033  或          http://jst.tsinghuajournals.com/CN/Y2022/V62/I3/627
  
  
  
  
  
[1] MEZEI F. Fundamentals of neutron spin echo spectroscopy[M]//MEZEI F, PAPPAS C, GUTBERLET T. Neutron spin echo spectroscopy. Berlin:Springer, 2002:5-14.
[2] RICHTER D, EWEN B, FARAGO B, et al. Microscopic dynamics and topological constraints in polymer melts:A neutron-spin-echo study[J]. Physical Review Letters, 1989, 62(18):2140-2143.
[3] RICHTER D, FARAGO B, FETTERS L J, et al. Direct microscopic observation of the entanglement distance in a polymer melt[J]. Physical Review Letters, 1990, 64(12):1389-1392.
[4] HAYTER J B, PENFOLD J. Self-consistent structural and dynamic study of concentrated micelle solutions[J]. Journal of the Chemical Society, Faraday Transactions 1:Physical Chemistry in Condensed Phases, 1981, 77(8):1851-1863.
[5] PYNN R. Neutron spin echo and three-axis spectroscopy[M]//MEZEI F. Neutron spin echo. Berlin:Springer Verlag, 1980:159.
[6] GÄHLER R, GOLUB R, HABICHT K, et al. Space-time description of neutron spin echo spectrometry[J]. Physica B:Condensed Matter, 1996, 229(1):1-17.
[7] REKVELDT M T. Novel SANS instrument using neutron spin echo[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 1996, 114(3-4):366-370.
[8] REKVELDT M T, PLOMP J, BOUWMAN W G, et al. Spin-echo small angle neutron scattering in Delft[J]. Review of Scientific Instruments, 2005, 76(3):033901.
[9] PLOMP J, DE HAAN V O, DALGLIESH R M, et al. Neutron spin-echo labelling at OffSpec, an ISIS second target station project[J]. Thin Solid Films, 2007, 515(14):5732-5735.
[10] BARKER J G, GLINKA C J, MOYER J J, et al. Design and performance of a thermal-neutron double-crystal diffractometer for USANS at NIST[J]. Journal of Applied Crystallography, 2005, 38(6):1004-1011.
[11] RUSSEL W B, SAVILLE D A, SCHOWALTER W R. Colloidal dispersions[M]. Cambridge:Cambridge University Press, 1989.
[12] VELEV O D, KALER E W, LENHOFF A M. Protein interactions in solution characterized by light and neutron scattering:Comparison of lysozyme and chymotrypsinogen[J]. Biophysical Journal, 1998, 75(6):2682-2697.
[13] KROUGLOV T, BOUWMAN W G, PLOMP J, et al. Structural transitions of hard-sphere colloids studied by spin-echo small-angle neutron scattering[J]. Journal of Applied Crystallography, 2003, 36(6):1417-1423.
[14] WASHINGTON A L, LI X, SCHOFIELD A B, et al. Inter-particle correlations in a hard-sphere colloidal suspension with polymer additives investigated by spin echo small angle neutron scattering (SESANS)[J]. Soft Matter, 2014, 10(17):3016-3026.
[15] KRUGLOV T V, BOUWMAN W G, DE SCHEPPER I M, et al. Application of spin-echo small-angle neutron scattering to study the structure of charged colloids[J]. Physica B:Condensed Matter, 2005, 356(1-4):218-222.
[16] ROSENBAUM D, ZAMORA P C, ZUKOSKI C F. Phase behavior of small attractive colloidal particles[J]. Physical Review Letters, 1996, 76(1):150-153.
[17] ANDERSON V J, LEKKERKERKER H N W. Insights into phase transition kinetics from colloid science[J]. Nature, 2002, 416(6883):811-815.
[18] PUSEY P N, VAN MEGEN W. Phase behaviour of concentrated suspensions of nearly hard colloidal spheres[J]. Nature, 1986, 320(6060):340-342.
[19] WANG Z, FARAONE A, YIN P C, et al. Dynamic equivalence between soft star polymers and hard spheres[J]. ACS Macro Letters, 2019, 8(11):1467-1473.
[20] WANG Z, IWASHITA T, PORCAR L, et al. Local elasticity in nonlinear rheology of interacting colloidal glasses revealed by neutron scattering and rheometry[J]. Physical Chemistry Chemical Physics, 2019, 21(1):38-45.
[21] LI X, SHEW C Y, LIU Y, et al. Theoretical studies on the structure of interacting colloidal suspensions by spin-echo small angle neutron scattering[J]. The Journal of Chemical Physics, 2010, 132(17):174509.
[22] LI X, SHEW C Y, LIU Y, et al. Prospect for characterizing interacting soft colloidal structures using spin-echo small angle neutron scattering[J]. The Journal of Chemical Physics, 2011, 134(9):094504.
[23] SHEW C Y, CHEN W R. A Monte Carlo algorithm for computing spin echo small angle neutron scattering correlation functions in real space:Hard sphere liquids[J]. The Journal of Chemical Physics, 2010, 132(4):044906.
[24] GODFRIN P D, CASTAÑEDA-PRIEGO R, LIU Y, et al. Intermediate range order and structure in colloidal dispersions with competing interactions[J]. The Journal of Chemical Physics, 2013, 139(15):154904.
[25] GODFRIN P D, VALADEZ-PÉREZ N E, CASTAÑEDA- PRIEGO R, et al. Generalized phase behavior of cluster formation in colloidal dispersions with competing interactions[J]. Soft Matter, 2014, 10(28):5061-5071.
[26] STRADNER A, SEDGWICK H, CARDINAUX F, et al. Equilibrium cluster formation in concentrated protein solutions and colloids[J]. Nature, 2004, 432(7016):492-495.
[27] PORCAR L, FALUS P, CHEN W R, et al. Formation of the dynamic clusters in concentrated lysozyme protein solutions[J]. The Journal of Physical Chemistry Letters, 2010, 1(1):126-129.
[28] LIU Y, PORCAR L, CHEN J H, et al. Lysozyme protein solution with an intermediate range order structure[J]. The Journal of Physical Chemistry B, 2011, 115(22):7238-7247.
[29] ANDERSSON R, VAN HEIJKAMP L F, DE SCHEPPER I M, et al. Analysis of spin-echo small-angle neutron scattering measurements[J]. Journal of Applied Crystallography, 2008, 41(5):868-885.
[30] KROUGLOV T, DE SCHEPPER I M, BOUWMAN W G, et al. Real-space interpretation of spin-echo small-angle neutron scattering[J]. Journal of Applied Crystallography, 2003, 36(1):117-124.
[31] KOTLARCHYK M, CHEN S H. Analysis of small angle neutron scattering spectra from polydisperse interacting colloids[J]. The Journal of Chemical Physics, 1983, 79(5):2461-2469.
[32] HANSEN J P, MCDONALD I R. Theory of simple liquids[M]. 2nd ed. London:Academic Press, 1990.
[33] CACCAMO C. Integral equation theory description of phase equilibria in classical fluids[J]. Physics Reports, 1996, 274(1-2):1-105.
[34] BERGENHOLTZ J, WAGNER N J, D'AGUANNO B. Thermodynamic self-consistency criterion in the mixed integral equation theory of liquid structure[J]. Physical Review E, 1996, 53(3):2968-2971.
[35] LIU Y, XI Y Y. Colloidal systems with a short-range attraction and long-range repulsion:Phase diagrams, structures, and dynamics[J]. Current Opinion in Colloid & Interface Science, 2019, 39:123-136.
[36] LIU Y, FRATINI E, BAGLIONI P, et al. Effective long-range attraction between protein molecules in solutions studied by small angle neutron scattering[J]. Physical Review Letters, 2005, 95(11):118102.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn