Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2022, Vol. 62 Issue (5): 881-890    DOI: 10.16511/j.cnki.qhdxxb.2022.22.027
  专题:能源地下结构与工程 本期目录 | 过刊浏览 | 高级检索 |
非饱和黏土地层中相变能源桩热性能测试
崔宏志, 黎海星, 包小华, 亓学栋, 史嘉鑫, 肖雄
深圳大学 土木与交通工程学院, 滨海城市韧性基础设施教育部重点实验室, 深圳 518060
Measured thermal characteristics of a phase change energy pile in unsaturated clay
CUI Hongzhi, LI Haixing, BAO Xiaohua, QI Xuedong, SHI Jiaxin, XIAO Xiong
Key Laboratory for Resilient Infrastructures of Coastal Cities of Ministry of Education, College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
全文: PDF(17143 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 采用钢球封装相变材料替换混凝土中粗骨料能够增加能源桩桩体的能量密度、提高换热量,从而减小热交换所需的地下空间资源。该文通过模型试验对非饱和黏土地层中的普通混凝土和相变储能混凝土能源桩进行冷热加载,对比研究了其热响应特性和对桩周土体的影响。试验结果表明:在冷热加载的热交换过程中,相变桩体周围土体传热主要范围约为1.5倍桩径,相变桩的换热管进出口温度变化大于普通桩,说明相变桩热交换效率高于普通桩;相变桩与普通桩在制热阶段的温差小于制冷阶段的温差,说明制冷加载在相同循环工况下的换热效率大于制热加载;在制冷过程中相变材料的加入加大了桩内竖向和横截面温度分布的不均匀性,在温度荷载作用下正常固结非饱和黏土地基产生明显的固结排水,发生不可恢复的沉降变形。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
崔宏志
黎海星
包小华
亓学栋
史嘉鑫
肖雄
关键词 相变能源桩冷热加载不均匀温度分布非饱和黏土固结沉降    
Abstract:The use of a phase change material (PCM) encapsulated in a steel ball in place of the coarse aggregate in concrete can improve the energy density and heat transfer in the energy pile which will reduce the underground space needed for the heat transfer. Cooling-heating loads are used in a traditional concrete energy pile and a PCM energy pile in a container containing unsaturated clay to experimentally study the thermal response of the piles and surrounding soil. The results show that the temperature influence range in the soil surrounding the phase change pile extends out to about 1.5 times the pile diameter during the cooling-heating processes with a larger temperature difference between the PCM energy pile inlet and outlet than with the traditional concrete energy pile, which indicates a larger heat transfer rate. The temperature differences in both the PCM pile and the traditional pile during heating are less than during cooling which shows that the heat transfer rates during cooling are larger than during heating for the same flow conditions. The results also show that the PCM increases the uneven temperature distribution during the cooling in the vertical and horizontal directions in the pile. In addition, irreversible settling of unsaturated clay is observed at the soil surface due to temperature induced soil consolidation and drainage.
Key wordsphase change energy pile    cooling-heating load    uneven temperature distribution    unsaturated clay    consolidation settling
收稿日期: 2022-01-20      出版日期: 2022-04-26
基金资助:国家自然科学基金资助项目(51925804)
作者简介: 崔宏志(1974—),男,教授。E-mail:h.z.cui@szu.edu.cn
引用本文:   
崔宏志, 黎海星, 包小华, 亓学栋, 史嘉鑫, 肖雄. 非饱和黏土地层中相变能源桩热性能测试[J]. 清华大学学报(自然科学版), 2022, 62(5): 881-890.
CUI Hongzhi, LI Haixing, BAO Xiaohua, QI Xuedong, SHI Jiaxin, XIAO Xiong. Measured thermal characteristics of a phase change energy pile in unsaturated clay. Journal of Tsinghua University(Science and Technology), 2022, 62(5): 881-890.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2022.22.027  或          http://jst.tsinghuajournals.com/CN/Y2022/V62/I5/881
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] GWNET. Renewables 2020 global status report[R]. 2020.
[2] BRANDL H. Energy foundations and other thermo-active ground structures[J]. Géotechnique, 2006, 56(2):81-122.
[3] 娄扬, 方鹏飞, 张日红, 等. 外置双U型静钻根植工法能源桩换热性能研究[J]. 防灾减灾工程学报, 2021, 41(1):100-109. LOU Y, FANG P F, ZHANG R H, et al. Heat transfer performance analysis of static drill rooted geothermal energy piles with external double U-tubes[J]. Journal of Disaster Prevention and Mitigation Engineering, 2021, 41(1):100-109. (in Chinese)
[4] 陈忠购, 赵石娆, 张正威. 内置并联U形埋管能量桩的换热性能研究[J]. 工程力学, 2013, 30(5):238-243. CHEN Z G, ZHAO S R, ZHANG Z W. Heat transfer analysis of energy piles with parallel connected U-tubes[J]. Engineering Mechanics, 2013, 30(5):238-243. (in Chinese)
[5] 郭红仙, 李翔宇, 程晓辉. 能源桩热响应测试的模拟及适用性评价[J]. 清华大学学报(自然科学版), 2015, 55(1):14-20, 26. GUO H X, LI X Y, CHENG X H. Simulation and applicability of thermal response tests in energy piles[J]. Journal of Tsinghua University (Science and Technology), 2015, 55(1):14-20, 26. (in Chinese)
[6] 崔宏志, 邹金平, 包小华, 等. 制冷工况相变能源桩热交换规律[J]. 清华大学学报(自然科学版), 2020, 60(9):715-725. CUI H Z, ZOU J P, BAO X H, et al. Heat exchange behavior of the phase change energy pile under cooling condition[J]. Journal of Tsinghua University (Science and Technology), 2020, 60(9):715-725. (in Chinese)
[7] 李任融, 孔纲强, 杨庆, 等. 流速对桩-筏基础中能量桩换热效率与热力耦合特性影响研究[J]. 岩土力学, 2020, 41(S1):264-270, 298. LI R R, KONG G Q, YANG Q, et al. Study on influence of flow velocity on heat transfer efficiency and thermal coupling characteristics of energy piles in pile-raft foundation[J]. Rock and Soil Mechanics, 2020, 41(S1):264-270, 298. (in Chinese)
[8] YOU S, CHENG X H, GUO H X, et al. In-situ experimental study of heat exchange capacity of CFG pile geothermal exchangers[J]. Energy and Buildings, 2014, 79:23-31.
[9] 刘汉龙, 黄旭, 孔纲强, 等. 桩芯介质对管式能量桩换热效率的影响[J]. 中国公路学报, 2019, 32(1):1-11. LIU H L, HUANG X, KONG G Q, et al. Influence of pile core medium on heat transfer efficiency of tubular energy pile[J]. China Journal of Highway and Transport, 2019, 32(1):1-11. (in Chinese)
[10] LI Q W, CHEN L, MA H T, et al. Enhanced heat transfer characteristics of graphite concrete and its application in energy piles[J]. Advances in Materials Science and Engineering, 2018, 2018:8142392.
[11] 崔宏志, 邹金平, 李宇博, 等. 饱和砂土地基中相变能源桩的热响应研究[C]//中国土木工程学会2019年学术年会论文集. 上海, 2019:32-44. CUI H Z, ZOU J P, LI Y B, et al. Thermal response of phase change energy piles in saturated sand soil[C]//Proceedings of the 2019 Annual Academic Conference of the Chinese Society of Civil Engineering. Shanghai, 2019:32-44. (in Chinese)
[12] PARK S, LEE S, OH K, et al. Engineering chart for thermal performance of cast-in-place energy pile considering thermal resistance[J]. Applied Thermal Engineering, 2018, 130:899-921.
[13] LI X L, TONG C, DUANMU L, et al. Research on U-tube heat exchanger with shape-stabilized phase change backfill material[J]. Procedia Engineering, 2016, 146:640-647.
[14] QI D, PU L, SUN F T, et al. Numerical investigation on thermal performance of ground heat exchangers using phase change materials as grout for ground source heat pump system[J]. Applied Thermal Engineering, 2016, 106:1023-1032.
[15] HAN C J, YU X. An innovative energy pile technology to expand the viability of geothermal bridge deck snow melting for different United States regions:Computational assisted feasibility analyses[J]. Renewable Energy, 2018, 123:417-427.
[16] LALOUI L, NUTH M, VULLIET L. Experimental and numerical investigations of the behaviour of a heat exchanger pile[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2006, 30(8):763-781.
[17] BOURNE-WEBB P J, AMATYA B, SOGA K, et al. Energy pile test at Lambeth College, London:Geotechnical and thermodynamic aspects of pile response to heat cycles[J]. Géotechnique, 2009, 59(3):237-248.
[18] 陈智, 高华雨, 肖衡林, 等. 温度荷载作用下灌注型能量桩热力响应原位试验研究[J]. 防灾减灾工程学报, 2019, 39(4):592-598. CHEN Z, GAO H Y, XIAO H L, et al. In-situ Thermo-mechanical response test of perfusion energy pile under temperature loading[J]. Journal of Disaster Prevention and Mitigation Engineering, 2019, 39(4):592-598. (in Chinese)
[19] MURPHY K D, MCCARTNEY J S, HENRY K S. Evaluation of thermo-mechanical and thermal behavior of full-scale energy foundations[J]. Acta Geotechnica, 2015, 10(2):179-195.
[20] PARK S, LEE D, LEE S, et al. Experimental and numerical analysis on thermal performance of large-diameter cast-in-place energy pile constructed in soft ground[J]. Energy, 2017, 118:297-311.
[21] 白冰, 陈星欣. 热-冷反复变化过程中饱和粘性土的热固结试验研究[J]. 工程力学, 2011, 28(10):139-144. BAI B, CHEN X X. Experimental study on the thermal consolidation of saturated clay under cyclic heating and cooling[J]. Engineering Mechanics, 2011, 28(10):139-144. (in Chinese)
[22] 江强强, 焦玉勇, 骆进, 等. 能源桩传热与承载特性研究现状及展望[J]. 岩土力学, 2019, 40(9):3351-3362, 3372. JIANG Q Q, JIAO Y Y, LUO J, et al. Review and prospect on heat transfer and bearing performance of energy piles[J]. Rock and Soil Mechanics, 2019, 40(9):3351-3362, 3372. (in Chinese)
[23] 雷华阳, 郝琪, 冯双喜, 等. 不同温度模式下软黏土孔隙水压力变化规律与应力-应变特性研究[J]. 岩石力学与工程学报, 2020, 39(11):2308-2318. LEI H Y, HAO Q, FENG S X, et al. Study on development of pore water pressure and stress-strain characteristics of soft clay under different temperature modes[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(11):2308-2318. (in Chinese)
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn