Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2022, Vol. 62 Issue (5): 891-899    DOI: 10.16511/j.cnki.qhdxxb.2022.22.015
  专题:能源地下结构与工程 本期目录 | 过刊浏览 | 高级检索 |
渗流作用下能源桩的换热性能及热-力耦合特性
杨卫波, 严超逸, 张来军, 汪峰
扬州大学 电气与能源动力工程学院, 扬州 225127
Heat transfer and thermal-mechanical coupling characteristics of an energy pile with groundwater seepage
YANG Weibo, YAN Chaoyi, ZHANG Laijun, WANG Feng
College of Electrical, Energy and Power Engineering, Yangzhou University, Yangzhou 225127, China
全文: PDF(9321 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 为了探寻实际工程中能源桩桩周土壤地下水渗流对能源桩传热性能和热-力耦合特性的影响,建立了考虑地下水渗流的能源桩热-力耦合数值模型,探讨了夏季工况下地下水渗流对能源桩热力学性质的影响。结果表明:夏季工况下能源桩在60 m/a水平渗流场作用下的换热量相对于无渗流情况可增加1.34倍,桩体温升可降低9.12%,地下水的流动降低了桩体位移、桩体轴力、侧摩阻力的变化幅度,还使得能源桩可以更快地达到稳定运行工况;在地下水渗流的影响下,渗流上游的土壤热影响范围明显缩小,但渗流下游的热影响范围显著扩大。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨卫波
严超逸
张来军
汪峰
关键词 地源热泵能源桩地下水渗流换热热-力耦合特性    
Abstract:The effects of groundwater seepage on the heat transfer and thermo-mechanical coupling characteristics of an energy pile were analyzed using a coupled thermal-mechanical numerical model of the energy pile with seepage. The model shows how the groundwater seepage affects the thermodynamic properties of the energy pile during summer. The results show that in the summer mode the heat transfer of the energy pile with a horizontal seepage velocity of 60 m/a is 1.34 times larger than without seepage. The temperature rise in the pile is then reduced by 9.12%. The groundwater seepage reduces the variations of the pile body displacement, axial force, and the pile side friction while the energy pile rapidly becomes stable. In addition, the groundwater seepage reduces the effect of soil heat in the upstream seepage, but increases the influence of the soil heat in the downstream seepage.
Key wordsground source heat pump    energy pile    groundwater seepage    heat transfer    thermo-mechanical coupling characteristics
收稿日期: 2021-11-07      出版日期: 2022-04-26
基金资助:国家自然科学基金资助项目(51978599)
作者简介: 杨卫波(1975—),男,教授。E-mail:yangwb2004@163.com
引用本文:   
杨卫波, 严超逸, 张来军, 汪峰. 渗流作用下能源桩的换热性能及热-力耦合特性[J]. 清华大学学报(自然科学版), 2022, 62(5): 891-899.
YANG Weibo, YAN Chaoyi, ZHANG Laijun, WANG Feng. Heat transfer and thermal-mechanical coupling characteristics of an energy pile with groundwater seepage. Journal of Tsinghua University(Science and Technology), 2022, 62(5): 891-899.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2022.22.015  或          http://jst.tsinghuajournals.com/CN/Y2022/V62/I5/891
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] ESEN M, YUKSEL T. Experimental evaluation of using various renewable energy sources for heating a greenhouse[J]. Energy and Buildings, 2013, 65:340-351.
[2] 杨卫波, 杨彬彬, 李晓金. 取放热不平衡条件下相变材料回填地埋管换热器传热特性研究[J]. 流体机械, 2021, 49(6):72-78. YANG W B, YANG B B, LI X J. Study on heat transfer characteristics of ground heat exchanger with PCM backfill under imbalance condition of heat absorption and release[J]. Fluid Machinery, 2021, 49(6):72-78. (in Chinese)
[3] LUO J, ZHAO H F, GUI S Q, et al. Study of thermal migration and induced mechanical effects in double U-tube energy piles[J]. Computers and Geotechnics, 2017, 91:1-11.
[4] 刘汉龙, 孔纲强, 吴宏伟. 能量桩工程应用研究进展及PCC能量桩技术开发[J]. 岩土工程学报, 2014, 36(1):176-181. LIU H L, KONG G Q, WU H W. Applications of energy piles and technical development of PCC energy piles[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(1):176-181. (in Chinese)
[5] ZHANG W K, ZHANG L H, CUI P, et al. The influence of groundwater seepage on the performance of ground source heat pump system with energy pile[J]. Applied Thermal Engineering, 2019, 162:114217.
[6] ZHANG W K, YANG H X, FANG L, et al. Study on heat transfer of pile foundation ground heat exchanger with three-dimensional groundwater seepage[J]. International Journal of Heat and Mass Transfer, 2017, 105:58-66.
[7] PARK S, LEE S, LEE H, et al. Effect of borehole material on analytical solutions of the heat transfer model of ground heat exchangers considering groundwater flow[J]. Energies, 2016, 9(5):318.
[8] WANG W, REGUEIRO R A, MCCARTNEY J S. Coupled axisymmetric thermo-poro-mechanical finite element analysis of energy foundation centrifuge experiments in partially saturated silt[J]. Geotechnical and Geological Engineering, 2015, 33(2):373-388.
[9] HAN C J, YU X. Analyses of the thermo-hydro-mechanical responses of energy pile subjected to non-isothermal heat exchange condition[J]. Renewable Energy, 2020, 157:150-163.
[10] YANG W B, ZHANG L J, ZHANG H, et al. Numerical investigations of the effects of different factors on the displacement of energy pile under the thermo-mechanical loads[J]. Case Studies in Thermal Engineering, 2020, 21:100711.
[11] LOU Y, FANG P F, XIE X Y, et al. Numerical research on thermal response for geothermal energy pile groups under groundwater flow[J]. Geomechanics for Energy and the Environment, 2021, 28:100257.
[12] YOU S, CHENG X H, YU C L, et al. Effects of groundwater flow on the heat transfer performance of energy piles:Experimental and numerical analysis[J]. Energy and Buildings, 2017, 155:249-259.
[13] YOU T, YANG H X. Influences of different factors on the three-dimensional heat transfer of spiral-coil energy pile group with seepage[J]. International Journal of Low-Carbon Technologies, 2020, 15(3):458-470.
[14] CHEN F, MAO J F, CHEN S Y, et al. Efficiency analysis of utilizing phase change materials as grout for a vertical U-tube heat exchanger coupled ground source heat pump system[J]. Applied Thermal Engineering, 2018, 130:698-709.
[15] 张来军. 渗流场下能量桩换热及热-力耦合特性的理论和实验研究[D]. 扬州:扬州大学, 2021. ZHANG L J. Theoretical and experimental study on heat transfer and thermo-mechanical coupling characteristics of energy piles under seepage field[D]. Yangzhou:Yangzhou University, 2021. (in Chinese)
[16] FEI K, DAI D. Experimental and numerical study on the behavior of energy piles subjected to thermal cycles[J]. Advances in Civil Engineering, 2018, 2018:3424528.
[17] ANSYS. ANSYS fluent user's guide[R]. Canonsburg:ANSYS., 2013.
[1] 李玉, 王相钦, 闵敬春. 蛇形管内燃油变物性流动换热特性数值模拟[J]. 清华大学学报(自然科学版), 2024, 64(2): 337-345.
[2] 黄潇立, 陈泽亮, 桂南, 杨星团, 屠基元, 姜胜耀. 还原氧化石墨烯纳米流体池沸腾强化换热实验[J]. 清华大学学报(自然科学版), 2023, 63(8): 1291-1296.
[3] 崔宏志, 黎海星, 包小华, 亓学栋, 史嘉鑫, 肖雄. 非饱和黏土地层中相变能源桩热性能测试[J]. 清华大学学报(自然科学版), 2022, 62(5): 881-890.
[4] 冀峰, 孙小静, 刘琳琳, 都健. 考虑余热利用的工业园区全局热集成[J]. 清华大学学报(自然科学版), 2022, 62(2): 312-320.
[5] 黄潇立, 陈泽亮, 桂南, 宫厚军, 杨星团, 屠基元, 姜胜耀. 石墨烯强化沸腾传热研究进展及应用综述[J]. 清华大学学报(自然科学版), 2022, 62(10): 1681-1690.
[6] 崔宏志, 邹金平, 包小华, 亓学栋, 齐贺. 制冷工况相变能源桩热交换规律[J]. 清华大学学报(自然科学版), 2020, 60(9): 715-725.
[7] 王言然, 孔纲强, 沈扬, 孙智文, 王新越, 肖涵宇. 热干扰下能量桩热力特性现场试验研究[J]. 清华大学学报(自然科学版), 2020, 60(9): 733-739.
[8] 黄腾, 李雪芳, 柯道友, 巴清心, 程林. 不同几何参数竖直蛇形管内超临界压力CO2流动与换热数值模拟[J]. 清华大学学报(自然科学版), 2020, 60(3): 263-270.
[9] 薛春辉, 董玉杰. 自然循环熔盐球床堆中间换热器的优化设计[J]. 清华大学学报(自然科学版), 2018, 58(5): 445-449.
[10] 肖武, 王开锋, 姜晓滨, 贺高红. 遗传-模拟退火算法优化设计管壳式换热器[J]. 清华大学学报(自然科学版), 2016, 56(7): 728-734.
[11] 赵熹, 原鲲, 周羽. GH3128高温拉伸强度设计方法的优化[J]. 清华大学学报(自然科学版), 2015, 55(9): 998-1002.
[12] 郭红仙,李翔宇,程晓辉. 能源桩热响应测试的模拟及适用性评价[J]. 清华大学学报(自然科学版), 2015, 55(1): 14-20.
[13] 方朝纲, 宋蔷, 仲蕾, 熊刚, 姚强. 重力场作用下三种不同燃料液滴在垂直电场中的燃烧特性[J]. 清华大学学报(自然科学版), 2014, 54(1): 97-101.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn