Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2022, Vol. 62 Issue (5): 934-942    DOI: 10.16511/j.cnki.qhdxxb.2021.21.040
  计算机科学与技术 本期目录 | 过刊浏览 | 高级检索 |
基于冗余距离筛选的UWB定位优化方法
张少辉1,3, 亓玉浩2, 翟方文1, 吕洪波4, 宋亦旭1
1. 清华大学 计算机科学与技术系, 北京 100084;
2. 兖州煤业股份有限公司 设备管理中心, 济宁 273500;
3. 中国地质大学(北京) 信息工程学院, 北京 100083;
4. 北方工业大学 机械与材料工程学院, 北京 100144
UWB positioning optimization method based on redundant distance screening
ZHANG Shaohui1,3, QI Yuhao2, ZHAI Fangwen1, L�Hongbo4, SONG Yixu1
1. Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China;
2. Equipment Management Center, Yanzhou Coal Mining Company Limited, Jining 273500, China;
3. School of Information Engineering, China University of Geosciences, Beijing 100083, China;
4. School of Mechanical and Material Engineering, North China University of Technology, Beijing 100144, China
全文: PDF(6609 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 超宽带(ultra wide band,UWB)定位技术根据距离参量建立标签定位的数学模型。由于测距误差的存在,标签定位的精确求解问题转换为非线性方程组的优化问题。在某项距离误差较大时,现有的优化方法可能会失效。该文提出基于冗余距离筛选的优化方法,以多个定位标签的间距为约束条件,对冗余距离设置权值进行筛选,使用梯度下降法优化Caffery方法计算的坐标初值。该方法在仿真实验中定位误差仅为Caffery-Taylor (CT)方法的70%,在真实数据实验中优化效果明显好于CT方法。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张少辉
亓玉浩
翟方文
吕洪波
宋亦旭
关键词 超宽带(UWB)位姿解算距离筛选梯度下降    
Abstract:Ultra wide band (UWB) positioning technology establishes a mathematical model of the target location based on distance parameters. The problem of accurately solving the tag point positioning is transformed into an optimization problem of nonlinear equations due to ranging errors. Existing optimization methods may fail when certain distance errors are large. Therefore, this paper proposes an optimization method based on redundant distance screening by considering the distances between multiple positioning tags as constraints, filtering the redundant distances by weighting, and using a gradient descent method to optimize the initial value calculated by the Caffery method. In simulation experiments, the positioning error of this method is only 70% of the Caffery-Taylor (CT) method. In real data experiments, this method outperforms the CT method in terms of the optimization effect.
Key wordsultra wide band (UWB)    pose solver    distance screening    gradient descent
收稿日期: 2021-07-21      出版日期: 2022-04-26
通讯作者: 宋亦旭,副研究员,E-mail:songyx@tsinghua.edu.cn      E-mail: songyx@tsinghua.edu.cn
作者简介: 张少辉(1998—),男,硕士研究生。
引用本文:   
张少辉, 亓玉浩, 翟方文, 吕洪波, 宋亦旭. 基于冗余距离筛选的UWB定位优化方法[J]. 清华大学学报(自然科学版), 2022, 62(5): 934-942.
ZHANG Shaohui, QI Yuhao, ZHAI Fangwen, L�Hongbo, SONG Yixu. UWB positioning optimization method based on redundant distance screening. Journal of Tsinghua University(Science and Technology), 2022, 62(5): 934-942.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2021.21.040  或          http://jst.tsinghuajournals.com/CN/Y2022/V62/I5/934
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] HASHEM O, HARRAS K A, YOUSSEF M. Accurate indoor positioning using IEEE 802.11mc round trip time[J]. Pervasive and Mobile Computing, 2021, 75:101416.
[2] SADHUKHAN P, GAIN S, DAHAL K, et al. An efficient clustering with robust outlier mitigation for Wi-Fi fingerprint based indoor positioning[J]. Applied Soft Computing, 2021, 109:107549.
[3] 陈国良, 张言哲, 汪云甲, 等. WiFi-PDR室内组合定位的无迹卡尔曼滤波算法[J]. 测绘学报, 2015, 44(12):1314-1321. CHEN G L, ZHANG Y Z, WANG Y J, et al. Unscented Kalman filter algorithm for WiFi-PDR integrated indoor positioning[J]. Acta Geodaetica et Cartographica Sinica,Journal of Geodesy and Geoinformation Science, 2015, 44(12); 1314-1321. (in Chinese)
[4] 席瑞, 李玉军, 侯孟书. 室内定位方法综述[J]. 计算机科学, 2016, 43(4):1-6, 32. XI R, LI Y J, HOU M S. Survey on indoor localization[J]. Computer Science, 2016, 43(4):1-6, 32. (in Chinese)
[5] 闫大禹, 宋伟, 王旭丹, 等. 国内室内定位技术发展现状综述[J]. 导航定位学报, 2019, 7(4):5-12. YAN D Y, SONG W, WANG X D, et al. Review of development status of indoor location technology in China[J]. Journal of Navigation and Positioning, 2019, 7(4):5-12. (in Chinese)
[6] 卢靖宇, 余文涛, 赵新, 等. 基于超宽带的移动机器人室内定位系统设计[J]. 电子技术应用, 2017, 43(5):25-28. LU J Y, YU W T, ZHAO X, et al. Design of indoor positioning system for mobile robot based on ultra-wideband[J]. Application of Electronic Technique, 2017, 43(5):25-28. (in Chinese)
[7] 黄梦雨, 秦建军, 高磊, 等. 基于UWB的零转径跟随机器人控制系统设计[J]. 重庆理工大学学报(自然科学), 2019, 33(9):142-150. HUANG M Y, QIN J J, GAO L, et al. Design of zero turning radius following robot control system based on UWB[J]. Journal of Chongqing University of Technology(Natural Science), 2019, 33(9):142-150.(in Chinese)
[8] 李浩博, 王坚, 王川阳. 超宽带室内动态定位精度影响探究[J]. 导航定位学报, 2018, 6(1):45-48. LI H B, WANG J, WANG C Y. Discussion on affection factors of UWB indoor kinematic positioning[J]. Journal of Navigation and Positioning, 2018, 6(1):45-48. (in Chinese)
[9] 吴绍华, 张乃通. 基于UWB的无线传感器网络中的两步TOA估计法[J]. 软件学报, 2007, 18(5):1164-1172. WU S H, ZHANG N T. A two-step TOA estimation method for UWB based wireless sensor networks[J], Journal of Software, 2007, 18(5):1164-1172. (in Chinese)
[10] BABA A I, WU F, AHMED T. A naive time of flight ranging scheme for wireless sensor networks[J]. International Journal of Communication Networks and Distributed Systems, 2020, 25(4):347-365.
[11] ZHANG R, HÖFLINGER F, REINDL L. TDOA-Based localization using interacting multiple model estimator and ultrasonic transmitter/receiver[J]. IEEE Transactions on Instrumentation and Measurement, 2013, 62(8):2205-2214.
[12] 王川阳, 王坚, 宁一鹏, 等. 超宽带定位的降噪方法研究[J]. 测绘科学, 2019, 44(4):175-181. WANG C Y, WANG J, NING Y P, et al. Study of noise reduction method for ultra wideband positioning[J]. Science of Surveying and Mapping, 2019, 44(4):175-181. (in Chinese)
[13] YIN H H, XIA W W, ZHANG Y Y, et al. UWB-based Indoor high precision localization system with robust unscented Kalman filter[C]//2016 IEEE International Conference on Communication Systems (iccs). Shenzhen, China:IEEE Press, 2016:1-6.
[14] 刘公绪, 史凌峰. 室内导航与定位技术发展综述[J]. 导航定位学报, 2018, 6(2):7-14. LIU G X, SHI L F. An overview about development of indoor navigation and positioning technology[J]. Journal of Navigation and Positioning, 2018, 6(2):7-14. (in Chinese)
[15] 赵连军. 基于目标特征的单目视觉位置姿态测量技术研究[D]. 成都:中国科学院大学(中国科学院光电技术研究所), 2014. ZHAO L J. Research on mono-vision pose measurement based on features of target[D]. Chengdu:University of Chinese Academy of Sciences (Institute of Optics and Electronics, Chinese Academy of Sciences), 2014. (in Chinese)
[16] EGGERT D W, LORUSSO A, FISHER R B. Estimating 3-D rigid body transformations:A comparison of four major algorithms[J]. Machine Vision and Applications, 1997, 9(5-6):272-290.
[17] CAFFERY J J. A new approach to the geometry of TOA location[C]//IEEE Vehicular Technology Conference Fall 2000. Boston, MA, USA:IEEE Press, 2000:1943-1949.
[18] 符世琛. 基于UWB测距的悬臂式掘进机位姿检测方法研究[D]. 北京:中国矿业大学(北京), 2018. FU S S. Research on pose detection method of boom-type roadheader based on UWB distance measurement[D]. Beijing:China University of Mining and Technology (Beijing), 2018. (in Chinese)
[19] 符世琛, 李一鸣, 杨健健, 等. 基于超宽带技术的掘进机自主定位定向方法研究[J]. 煤炭学报, 2015, 40(11):2603-2610. FU S S, LI Y M, YANG J J, et al. Research on autonomous positioning and orientation method of roadheader based on Ultra Wide-Band technology[J]. Journal of China Coal Society, 2015, 40(11):2603-2610. (in Chinese)
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn