Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2022, Vol. 62 Issue (6): 987-993    DOI: 10.16511/j.cnki.qhdxxb.2022.22.018
  专刊:公共安全 本期目录 | 过刊浏览 | 高级检索 |
城市综合管廊燃气爆炸传播特性实验研究
吴建松1, 蔡继涛1, 赵亦孟1, 操阅1, 周睿2, 庞磊3
1. 中国矿业大学(北京) 应急管理与安全工程学院, 北京 100083;
2. 清华大学 公共安全研究院, 北京 100084;
3. 北京石油化工学院 安全工程学院, 北京 102617
Experimental study of the propagation characteristics of gas explosions in urban utility tunnels
WU Jiansong1, CAI Jitao1, ZHAO Yimeng1, CAO Yue1, ZHOU Rui2, PANG Lei3
1. School of Emergency Management and Safety Engineering, China University of Mining & Technology (Beijing), Beijing 100083, China;
2. Institute of Public Safety Research, Tsinghua University, Beijing 100084, China;
3. School of Safety Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
全文: PDF(7359 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 随着中国城镇化建设的快速发展,容纳天然气、供热、给水、电力等多种市政管线于一体的综合管廊已成为保障城市“生命线”运行的重要基础设施。天然气管线作为其中最具威胁的危险源,一旦发生泄漏极易在管廊受限空间内形成易燃易爆气体云,给综合管廊安全运行带来巨大的爆炸风险。为揭示多因素影响下综合管廊复杂受限空间内燃气爆炸传播特性,有效支撑管廊燃气爆炸事故后果评估及安全防护需求,该文使用自主研制的综合管廊燃气爆炸实验系统研究了甲烷体积分数、泄压口和舱内附属设施(燃气管道、配电箱、灭火箱等)对火焰传播过程和超压分布的影响。结果表明:甲烷体积分数为9.5%时爆炸超压达到峰值;与封闭管廊模型相比,综合管廊预设的通风口可以起到较强的泄压作用,超压峰值衰减率达28.4%;燃气舱内附属设施会加速火焰传播过程并导致更大的超压峰值。该研究能为提升综合管廊天然气舱的防灾减灾能力提供理论和技术支撑。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴建松
蔡继涛
赵亦孟
操阅
周睿
庞磊
关键词 综合管廊燃气爆炸火焰传播超压    
Abstract:The rapid urbanization in China has led to many utility tunnels containing a variety of municipal pipelines including natural gas, heating, water and electrical power that are key infrastructure components in cities. The most dangerous hazard is the natural gas pipelines that can leak to form explosive gas clouds in the confined tunnels which brings huge explosion risks to the safe operation of the utility tunnels. The propagation characteristics of gas explosions in a complex, confined utility tunnel were studied experimentally as a function of various factors to support safety control and assessments of gas explosions in utility tunnels. The experiments studied the effects of methane concentration, pressure relief ports and auxiliary facilities such as the gas pipeline design, distribution boxes and fire boxes on the flame propagation and the overpressures. The results show that the maximum overpressure occurs for a methane concentration of 9.5%, vents in the tunnel significantly reduce the overpressures compared with closed utility tunnels, and the peak overpressure attenuation rate is 28.4%. Auxiliary facilities in the tunnel accelerate the flame propagation and lead to greater overpressures. This study provides guidance for improving disaster mitigation for natural gas utility tunnels in cities.
Key wordsutility tunnels    gas explosion    flame propagation    overpressure
收稿日期: 2021-12-22      出版日期: 2022-05-06
基金资助:北京市科技新星计划交叉学科合作课题(Z211100002121146);国家重点研发计划项目(2017YFC0805001)
作者简介: 吴建松(1985-),男,教授。E-mail:jiansongwu@163.com
引用本文:   
吴建松, 蔡继涛, 赵亦孟, 操阅, 周睿, 庞磊. 城市综合管廊燃气爆炸传播特性实验研究[J]. 清华大学学报(自然科学版), 2022, 62(6): 987-993.
WU Jiansong, CAI Jitao, ZHAO Yimeng, CAO Yue, ZHOU Rui, PANG Lei. Experimental study of the propagation characteristics of gas explosions in urban utility tunnels. Journal of Tsinghua University(Science and Technology), 2022, 62(6): 987-993.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2022.22.018  或          http://jst.tsinghuajournals.com/CN/Y2022/V62/I6/987
  
  
  
  
  
  
  
  
  
[1] 王军, 陈欣盛, 李少龙, 等. 城市地下综合管廊建设及运营现状[J]. 土木工程与管理学报, 2018, 35(2):101-109. WANG J, CHEN X S, LI S L, et al. About construction and operation present situation of utility tunnel in urban[J]. Journal of Civil Engineering and Management, 2018, 35(2):101-109. (in Chinese)
[2] 吴建松, 原帅琪, 蔡继涛, 等. 基于OpenFOAM的综合管廊舱内燃气泄漏扩散数值模拟[J]. 中国安全生产科学技术, 2020, 16(2):168-173. WU J S, YUAN S Q, CAI J T, et al. Numerical simulation of gas leakage and dispersion in utility tunnel compartment based on OpenFOAM[J]. Journal of Safety Science and Technology, 2020, 16(2):168-173. (in Chinese)
[3] 中华人民共和国住房和城乡建设部. 城市综合管廊工程技术规范:GB 50838-2015[S]. 北京:中国计划出版社, 2015. Ministry of Housing and Urban-Rural Development of the People's Republic of China. Technical code for urban utility tunnel engineering:GB 50838-2015[S] Beijing:China Planning Press, 2015. (in Chinese)
[4] 张展. 湖北十堰集贸市场燃气爆炸事故习近平作出重要指示[J]. 现代职业安全, 2021(7):8. ZHANG Z. Important instructions from Xi Jinping on the gas explosion accident in Shiyan Market, Hubei Province[J]. Modern Occupational Safety, 2021(7):8. (in Chinese)
[5] 战训. 吉林省松原市"7·4"燃气管道泄漏爆炸救援解析[J]. 中国消防, 2018(8):61-64. ZHAN X. Analysis of "7·4" gas pipeline leakage explosion rescue in Songyuan City, Jilin Province[J]. China Fire, 2018(8):61-64. (in Chinese)
[6] 孙加超, 邓勇军, 姚勇, 等. 综合管廊燃气仓内爆炸下冲击波衰减规律研究[J]. 爆破, 2018, 35(3):35-41. SUN J C, DENG Y J, YAO Y, et al. Attenuation law of explosive shock wave in utility tunnel gas chamber[J]. Blasting, 2018, 35(3):35-41. (in Chinese)
[7] 刘中宪, 王治坤, 张欢欢, 等. 燃气爆炸作用下地下综合管廊动力响应模拟[J]. 防灾减灾工程学报, 2018, 38(4):624-632. LIU Z X, WANG Z K, ZHANG H H, et al. Numerical simulation of blast-resistant performance of utility tunnel under gas explosion[J]. Journal of Disaster Prevention and Mitigation Engineering, 2018, 38(4):624-632. (in Chinese)
[8] 刘希亮, 李烨, 王新宇, 等. 不同截面管廊在燃气爆炸作用下的动力响应分析[J]. 应用力学学报, 2019, 36(5):1111-1115. LIU X L, LI Y, WANG X Y, et al. Dynamic response analysis of different sections gallery under gas explosion[J]. Chinese Journal of Applied Mechanics, 2019, 36(5):1111-1115. (in Chinese)
[9] 刘希亮, 李烨, 王新宇, 等. 地下管廊在燃气爆炸作用下的动力响应分析[J]. 高压物理学报, 2018, 32(6):064104. LIU X L, LI Y, WANG X Y, et al. Dynamic response analysis of underground pipe gallery under gas explosion[J]. Chinese Journal of High Pressure Physics, 2018, 32(6):064104. (in Chinese)
[10] WANG S P, LI Z, FANG Q, et al. Performance of utility tunnels under gas explosion loads[J]. Tunnelling and Underground Space Technology, 2021, 109:103762.
[11] XUE Y Z, CHEN G H, ZHANG Q, et al. Simulation of the dynamic response of an urban utility tunnel under a natural gas explosion[J]. Tunnelling and Underground Space Technology, 2021, 108:103713.
[12] ZHOU Q, HE H G, LIU S F, et al. Blast resistance evaluation of urban utility tunnel reinforced with BFRP bars[J]. Defence Technology, 2021, 17(2):512-530.
[13] YANG Y K, WU C Q, LIU Z X, et al. Protective effect of unbonded prestressed ultra-high performance reinforced concrete slab against gas explosion in buried utility tunnel[J]. Process Safety and Environmental Protection, 2021, 149:370-384.
[14] MENG Q F, WU C Q, HAO H, et al. Steel fibre reinforced alkali-activated geopolymer concrete slabs subjected to natural gas explosion in buried utility tunnel[J]. Construction and Building Materials, 2020, 246:118447.
[15] 赵勇坚, 龚燚, 丁勇, 等. 综合管廊天然气舱内爆炸对邻近地铁隧道的影响研究[J]. 现代隧道技术, 2018, 55(6):139-143, 151. ZHAO Y J, GONG Y, DING Y, et al. Effect of explosion in a gas pipeline compartment of a utility tunnel on neighboring metro tunnels[J]. Modern Tunnelling Technology, 2018, 55(6):139-143, 151. (in Chinese)
[16] YAN Q S, ZHANG Y N, SUN Q W. Characteristic study on gas blast loadings in an urban utility tunnel[J]. Journal of Performance of Constructed Facilities, 2020, 34(4):04020076.
[17] LI Z X, WU J S, LIU M Y, et al. Numerical analysis of the characteristics of gas explosion process in natural gas compartment of utility tunnel using FLACS[J]. Sustainability, 2020, 12(1):153.
[18] ZHANG S H, MA H T, HUANG X M, et al. Numerical simulation on methane-hydrogen explosion in gas compartment in utility tunnel[J]. Process Safety and Environmental Protection, 2020, 140:100-110.
[19] LI Y C, BI M S, ZHOU Y H, et al. Experimental and theoretical evaluation of hydrogen cloud explosion with built-in obstacles[J]. International Journal of Hydrogen Energy, 2020, 45(51):28007-28018.
[20] GUO C W, JIANG S G, SHAO H, et al. Suppression effect and mechanism of fly ash on gas explosions[J]. Journal of Loss Prevention in the Process Industries, 2022, 74:104643.
[21] WANG Q H, SUN Y L, JIANG J C, et al. Inhibiting effects of gas-particle mixtures containing CO2, Mg(OH)2 particles, and NH4H2PO4 particles on methane explosion in a 20-L closed vessel[J]. Journal of Loss Prevention in the Process Industries, 2020, 64:104082.
[1] 曾国华, 汤志立, 徐千军. 基于综合效益量化的综合管廊投资决策与成本回收机制[J]. 清华大学学报(自然科学版), 2023, 63(2): 210-222.
[2] 赵国富, 王守清. 城市地下综合管廊PPP项目回报结构案例研究[J]. 清华大学学报(自然科学版), 2022, 62(2): 250-258.
[3] 陈长坤, 徐童, 史聪灵, 赵小龙, 张宇伦. 隧道内可燃液体蒸气爆燃超压缩尺寸实验研究[J]. 清华大学学报(自然科学版), 2020, 60(3): 278-284.
[4] 郑东, 钟北京. 四组分汽油替代燃料的化学动力学模型[J]. 清华大学学报(自然科学版), 2015, 55(10): 1135-1142.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn