Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2022, Vol. 62 Issue (7): 1220-1227    DOI: 10.16511/j.cnki.qhdxxb.2022.26.011
  论文 本期目录 | 过刊浏览 | 高级检索 |
基于旅客异质性画像的公铁联程出行方案推荐方法
杨敏, 李宏伟, 任怡凤, 张聪伟
东南大学 交通学院, 南京 210096
Road-rail intermodal travel recommendations based on a passenger heterogeneity profile
YANG Min, LI Hongwei, REN Yifeng, ZHANG Congwei
School of Transportation, Southeast University, Nanjing 210096, China
全文: PDF(2188 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 公铁联程是我国重要的城际出行交通方式之一,但基于单一因素排序的城际票务出行方案推荐方法无法满足公铁联程旅客的个性化出行需求。为提升出行效率,该文基于旅客历史出行订单数据构建画像数据库,使用TF-IDF (term frequency-inverse document frequency)、K-means算法探究旅客异质性衍生的公铁联程出行需求差异,依据偏好得分、敏感特性设置奖励函数,使用Q-learning强化学习算法构建基于旅客异质性画像的公铁联程出行方案推荐方法。以天津-泗洪作为典型的特大城市-小城市公铁联程出行路线,与传统的城际出行方案推荐方法对比,为3类不同敏感特性的旅客推荐公铁联程出行方案。结果表明:该文推荐的公铁联程出行方案能够缩短20%的行程耗时,降低32%的行程费用,在契合旅客行为偏好和敏感特性、满足个性化出行需求方面均有较好的表现。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨敏
李宏伟
任怡凤
张聪伟
关键词 公铁联程异质性Q-learning算法出行推荐方法    
Abstract:Road-rail intermodal travel is one of the important intercity travel modes. However, an intercity travel recommendation method based on single factor ranking cannot satisfy the personalized travel demands of road-rail intermodal passengers. This study improves travel efficiency by using a profile database based on passenger historical ticketing data with the term frequency-inverse document frequency (TP-IDF) and K-means algorithms to explore the road-rail intermodal travel demand differences derived from the passenger heterogeneity. The model uses reward functions based on preference scores and sensitivity characteristics with the Q-learning reinforcement learning algorithm in a road-rail intermodal travel recommendation method based on the passenger heterogeneity profile. The method is applied to the Tianjin-Sihong route as a typical road-rail intermodal travel route from a megacity to small cities with road-rail intermodal travel schemes recommended for three types of passengers with different sensitivities. The results show that the recommended travel schemes shorten travel times by 20% and reduce travel costs by 32% while effectively meeting passenger behavior preferences, sensitivity characteristics and personal demands.
Key wordsroad-rail intermodal travel    heterogeneity    Q-learning algorithm    travel recommendations
收稿日期: 2021-10-30      出版日期: 2022-06-16
基金资助:国家重点研发计划项目(2018YFB1601300);国家自然科学基金资助项目(52072066);江苏省杰出青年基金资助项目(BK20200014)
作者简介: 杨敏(1981—),男,教授。E-mail:yangmin@seu.edu.cn
引用本文:   
杨敏, 李宏伟, 任怡凤, 张聪伟. 基于旅客异质性画像的公铁联程出行方案推荐方法[J]. 清华大学学报(自然科学版), 2022, 62(7): 1220-1227.
YANG Min, LI Hongwei, REN Yifeng, ZHANG Congwei. Road-rail intermodal travel recommendations based on a passenger heterogeneity profile. Journal of Tsinghua University(Science and Technology), 2022, 62(7): 1220-1227.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2022.26.011  或          http://jst.tsinghuajournals.com/CN/Y2022/V62/I7/1220
  
  
  
  
  
  
  
  
  
  
  
[1] GIVONI M, CHEN X M. Airline and railway disintegration in China:The case of Shanghai Hongqiao integrated transport hub[J]. Transportation Letters, 2017, 9(4):202-214.
[2] JIANG Y L, TIMMERMANS H J P, CHEN C, et al. Determinants of air-rail integration service of Shijiazhuang airport, China:Analysis of historical data and stated preferences[J]. Transportmetrica B:Transport Dynamics, 2019, 7(1):1572-1587.
[3] LI Z C, SHENG D. Forecasting passenger travel demand for air and high-speed rail integration service:A case study of Beijing-Guangzhou corridor, China[J]. Transportation Research Part A:Policy and Practice, 2016, 94:397-410.
[4] 芮海田, 吴群琪. 高铁运输与民航运输选择下的中长距离出行决策行为[J]. 中国公路学报, 2016, 29(3):134-141. RUI H T, WU Q Q. Medium-and long-distance travel mode decision between high-speed rail and civil aviation[J]. China Journal of Highway and Transport, 2016, 29(3):134-141. (in Chinese)
[5] YUAN Y L, YANG M, FENG T, et al. Heterogeneity in passenger satisfaction with air-rail integration services:Results of a finite mixture partial least squares model[J]. Transportation Research Part A:Policy and Practice, 2021, 147:133-158.
[6] 李兴华, 李思雨, 成诚, 等. 空铁一体枢纽联运服务需求及偏好研究[J]. 综合运输, 2020, 42(6):8-12. LI X H, LI S Y, CHENG C, et al. Analyzing the air-rail transfer service demand and preference for air-rail integrated hubs[J]. China Transportation Review, 2020, 42(6):8-12. (in Chinese)
[7] 陈琳. 京津冀城市群枢纽间旅客联程出行行为研究[D]. 北京:北京交通大学, 2020. CHEN L. Research on the intermodal behavior of passengers between the hubs of the Beijing-Tianjin-Hebei urban agglomeration[D]. Beijing:Beijing Jiaotong University, 2020. (in Chinese)
[8] BOVY P H L. On modelling route choice sets in transportation networks:A synthesis[J]. Transport Reviews, 2009, 29(1):43-68.
[9] LI D W, YANG M, JIN C J, et al. Multi-modal combined route choice modeling in the MaaS age considering generalized path overlapping problem[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(4):2430-2441.
[10] LIU Z Y, MENG Q. Bus-based park-and ride-system:A stochastic model on multimodal network with congestion pricing schemes[J]. International Journal of Systems Science, 2014, 45(5):994-1006.
[11] WONG S C, TONG C O. Estimation of time-dependent origin-destination matrices for transit networks[J]. Transportation Research Part B:Methodological, 1998, 32(1):35-48.
[12] HORN M E T. An extended model and procedural framework for planning multi-modal passenger journeys[J]. Transportation Research Part B:Methodological, 2003, 37(7):641-660.
[13] BARRETT C, BISSET K, HOLZER M, et al. Engineering label-constrained shortest-path algorithms[C]//Proceedings of the 4th International Conference on Algorithmic Aspects in Information and Management. Shanghai, China:Springer, 2008:27-37.
[14] BARRETT C, BISSET K, JACOB R, et al. Classical and contemporary shortest path problems in road networks:Implementation and experimental analysis of the TRANSIMS router[C]//10th Annual European Symposium on Algorithms. Rome, Italy:Springer, 2002:126-138.
[15] SONG Y C, LI D W, CAO Q, et al. The whole day path planning problem incorporating mode chains modeling in the era of mobility as a service[J]. Transportation Research Part C:Emerging Technologies, 2021, 132:103360.
[16] RENJITH S, SREEKUMAR A, JATHAVEDAN M. An extensive study on the evolution of context-aware personalized travel recommender systems[J]. Information Processing & Management, 2020, 57(1):102078.
[17] ABOWD G D, ATKESON C G, HONG J, et al. Cyberguide:A mobile context-aware tour guide[J]. Wireless Networks, 1997, 3(5):421-433.
[18] 张学龙. 多式联运出行方案规划系统的设计与实现[D]. 大连:大连理工大学, 2019. ZHANG X L. The design and implementation of multimodal travel scheme planning system[D]. Dalian:Dalian University of Technology, 2019. (in Chinese)
[19] 刘小燕, 陈艳丽, 贾宗璞, 等. 基于增强学习的旅行计划推荐系统[J]. 计算机工程, 2010, 36(21):254-256, 259. LIU X Y, CHEN Y L, JIA Z P, et al. Recommender system for travel plan based on reinforcement learning[J]. Computer Engineering, 2010, 36(21):254-256, 259. (in Chinese)
[20] WEN Y T, YEO J, PENG W C, et al. Efficient keyword-aware representative travel route recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2017, 29(8):1639-1652.
[21] 高阳, 陈世福, 陆鑫. 强化学习研究综述[J]. 自动化学报, 2004, 30(1):86-100. GAO Y, CHEN S F, LU X. Research on reinforcement learning technology:A review[J]. Acta Automatica Sinica, 2004, 30(1):86-100. (in Chinese)
[22] CHENG Y H, HUANG T Y. High speed rail passenger segmentation and ticketing channel preference[J]. Transportation Research Part A:Policy and Practice, 2014, 66:127-143.
[23] BORDAGARAY M, DELL'OLIO L, IBEAS A, et al. Modelling user perception of bus transit quality considering user and service heterogeneity[J]. Transportmetrica A:Transport Science, 2014, 10(8):705-721.
[24] RASOULI S, TIMMERMANS H J P. Covariates-dependent random parameters regret-rejoice models of choice behavior:Specification and performance assessment using experimental design data[J]. Transportmetrica A:Transport Science, 2019, 15(2):485-525.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn