Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2023, Vol. 63 Issue (1): 114-124    DOI: 10.16511/j.cnki.qhdxxb.2022.21.034
  核能与新能源工程 本期目录 | 过刊浏览 | 高级检索 |
兆伏级串级自触发开关脉冲击穿特性影响机制及优化
王天驰1,2, 谢霖燊2, 李俊娜3, 杨友恒1,2, 黄涛2, 陈志强2, 郭帆2, 杜应超1, 陈伟2
1. 粒子技术与辐射成像教育部重点实验室(清华大学), 北京 100084;
2. 西北核技术研究所 强脉冲辐射环境模拟与效应国家重点实验室, 西安 710024;
3. 西安交通大学 电力设备电气绝缘国家重点实验室, 西安 710049
Influence mechanisms and optimization of pulsed breakdown characteristics of a megavolt class cascade self-triggered switch
WANG Tianchi1,2, XIE Linshen2, LI Junna3, YANG Youheng1,2, HUANG Tao2, CHEN Zhiqiang2, GUO Fan2, DU Yingchao1, CHEN Wei2
1. Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education, Beijing 100084, China;
2. State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology, Xi'an 710024, China;
3. State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China
全文: PDF(5579 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 大型脉冲功率装置中使用的兆伏级开关常采用串级结构以提高工作电压并保证开关电场的均匀性。在脉冲电压上升速率固定且单级开关击穿概率服从Weibull分布前提下,推导了串级开关击穿概率分布模型,并分析了3级串级开关击穿特性的影响机制。在能保证各单级开关击穿特性一致性较好的条件下,触发3级开关时,后击穿的2级在高过压下击穿,每级开关的平均击穿电压降低,开关整体击穿时延抖动与单级触发开关相当;触发1级开关时,大概率是触发级先击穿、2个自击穿级在高过压下击穿,开关整体抖动远小于自击穿抖动,每级开关的平均击穿电压比触发3级时更高,但由于自击穿级仍有小概率先击穿,开关整体抖动约为触发3级时的2倍。在前沿约300 ns的脉冲电压下实验研究了串级开关的击穿特性,其中单级开关采用自触发持续预电离方式以保证特性的一致性。结果表明,开关工作电压0.8~2.0 MV范围内,触发1级时,时延抖动2.9~7.7 ns、电压分散性0.51%~2.21%,触发3级时,时延抖动2.3~3.6 ns、电压分散性0.59%~0.91%,验证了模型分析所得的规律,且实现了对原有串级开关击穿特性的优化。此外,由于0.3 MPa以上高气压时开关的自击穿状态更稳定,触发1级与触发3级时开关整体抖动基本相当。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王天驰
谢霖燊
李俊娜
杨友恒
黄涛
陈志强
郭帆
杜应超
陈伟
关键词 串级气体开关预电离脉冲击穿抖动    
Abstract:Megavolt switches in large pulses typically use a cascade configuration to increase operating voltage and ensure electric field uniformity. We must reduce their jitter when we need multipulse superposition to obtain a higher voltage pulse. Moreover, in the high-altitude electromagnetic pulse simulator, the megavolt pulsed switch needs to adopt the self-triggering technique to simplify the structure and reduce weight for good mobility and hoisting requirements. However, it is difficult to carry out a large number of experiments and completely reveal the influence mechanisms of the characteristics of megavolt switches via experiments. Therefore, this paper derives a breakdown probability distribution model of a cascade switch based on the characteristic parameters of a single-stage switch, which can be obtained easier from experiments. The experiment of the cascade switch is then carried out to validate the model analysis. In the model, we assume that the rising rate of the pulse voltage is a constant and that the breakdown probability of a single-stage switch follows the Weibull distribution. It is common in cascade switches to allow one stage to break down in triggered mode while others are in self-breakdown mode due to overvoltage. When the cascade switch has n stages, and one stage is triggered, it is seen as three equivalent switches based on their breakdown sequence. This paper assumes that x self-breakdown stages first close, the triggered stage closes next, and finally, (n-x-1) self-breakdown stages close. The range of x is [0, n-1]. Then the breakdown probability distribution model of each equivalent switch can be derived using the existing calculation method. The influence mechanisms of the breakdown characteristics of a three-stage cascade switch are semiquantitatively analyzed based on the model. If the uniformity of breakdown characteristics of each triggered switch can be guaranteed and three stages are all triggered, the switch jitter is approximately equal to the jitter of a single-stage triggered switch because the latter two stages break down under high overvoltage. The mean breakdown voltage of each stage is lower than a single-stage triggered switch. When only one stage is triggered, most probably, the triggered stage will close first, followed by two self-breakdown stages under high overvoltage. The switch jitter is significantly lower than that under the self-breakdown mode, and the mean breakdown voltage of each stage is higher than that when all three stages are triggered. However, the possibility that one self-breakdown stage closes first results in the switch jitter being approximately twice when all three stages are triggered. The improvement path of the switch jitter characteristics can be inferred using the model analysis. The jitter of the triggered single-stage switch should be reduced, and it is preferable to trigger all stages if the uniformity of the breakdown characteristic of each single-stage switch can be guaranteed. In the experiment, the three-stage cascade switch operates on a pulsed voltage with a rise time of 300 ns and an operating voltage range of 0.8—2.0 MV. Self-triggered continuous preionization is adapted to eliminate the influence of trigger gap jitter on the switch jitter, ensuring the uniformity of breakdown characteristics of each single-stage switch. When one stage is triggered, the time delay jitter is 2.9—7.7 ns, and the breakdown voltage jitter is 0.51%—2.21%. When three stages are triggered, the time delay jitter is 2.3—3.6 ns, and the breakdown voltage jitter is 0.59%—0.91%. The preceding analysis is verified, and the switch characteristics are improved compared to the original one. Moreover, the self-breakdown characteristic is more stable when the gas pressure exceeds 0.3 MPa; thus, the switch jitter is approximately the same when we trigger one or three stages.
Key wordscascade gas switch    pre-ionization    pulsed breakdown    jitter
收稿日期: 2022-05-09      出版日期: 2023-01-11
基金资助:杜应超,副教授,E-mail:dych@tsinghua.edu.cn;陈伟,研究员,E-mail:chenwei6802@163.com。
引用本文:   
王天驰, 谢霖燊, 李俊娜, 杨友恒, 黄涛, 陈志强, 郭帆, 杜应超, 陈伟. 兆伏级串级自触发开关脉冲击穿特性影响机制及优化[J]. 清华大学学报(自然科学版), 2023, 63(1): 114-124.
WANG Tianchi, XIE Linshen, LI Junna, YANG Youheng, HUANG Tao, CHEN Zhiqiang, GUO Fan, DU Yingchao, CHEN Wei. Influence mechanisms and optimization of pulsed breakdown characteristics of a megavolt class cascade self-triggered switch. Journal of Tsinghua University(Science and Technology), 2023, 63(1): 114-124.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2022.21.034  或          http://jst.tsinghuajournals.com/CN/Y2023/V63/I1/114
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] GILMAN C, LAM S K, NAFF J T, et al. Design and performance of the FEMP-2000: A fast risetime, 2 MV EMP pulser [C]//Digest of Technical Papers. 12th IEEE International Pulsed Power Conference. Monterey, USA: IEEE, 1999: 1437-1440.
[2] BAILEY V, CARBONI V, EICHENBERGER C, et al. A 6-MV pulser to drive horizontally polarized EMP simulators [J]. IEEE Transactions on Plasma Science, 2010, 38(10): 2554-2558.
[3] SU J C, ZENG B, GAO P C, et al. A voltage-division-type low-jitter self-triggered repetition-rate switch [J]. Review of Scientific Instruments, 2016, 87(10): 105118.
[4] NAFF J T. Spark gaps for EMP and SREMP pulsers [C]//Proceedings of the 17th IEEE Pulsed Power Conference. Washington, USA: IEEE, 2009: 322-331.
[5] HEGELER F, MYERS M C, WOLFORD M F, et al. Low jitter, high voltage, repetitive laser triggered gas switches [J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2013, 20(4): 1168-1188.
[6] YIN J H, SUN F J, QIU A C, et al. 2.8-MV low-inductance low-jitter electrical-triggered gas switch [J]. IEEE Transactions on Plasma Science, 2016, 44(10): 2045-2052.
[7] WARNE L K, VAN DEN A J A, LEHR J M, et al. Fundamental science investigations to develop a 6-MV laser triggered gas switch for ZR: First annual report [R]. Albuquerque, NM, Livermore: Sandia National Laboratories, 2007.
[8] LECHIEN K R, SAVAGE M E, ANAYA V, et al. Development of a 5.4 MV laser triggered gas switch for multimodule, multimegampere pulsed power drivers [J]. Physical Review Special Topics-Accelerators and Beams, 2008, 11(6): 060402.
[9] WAKELAND P E, WEMPLE N R, SAVAGE M E. 6+ MV laser triggered gas switch used on Z [C]// Proceedings of the 2017 IEEE 21st International Conference on Pulsed Power. Brighton, UK: IEEE, 2017: 1-6.
[10] LI J N, JIA W, TANG J P, et al. A 3-MV low-jitter UV-illumination switch [J]. IEEE Transactions on Plasma Science, 2013, 41(2): 360-364.
[11] LI J N, XIE L S, WU W, et al. Design and experiment of a 4-MV self-triggered switch [J]. IEEE Transactions on Plasma Science, 2022, 50(1): 97-102.
[12] 李俊娜. 百纳秒紫外预电离放电对MV级开关击穿特性的影响[D]. 西安: 西北核技术研究所, 2015. LI J N. Influences of UV illumination discharge on breakdown characteristic of switch under hundred- nanosecond MV pulsed voltage [D]. Xi'an: Northwest Institute of Nuclear Technology, 2015. (in Chinese)
[13] STYGAR W A, IVES H C, WAGONER T C, et al. Flashover of a vacuum-insulator interface: A statistical model [J]. Physical Review Special Topics-Accelerators and Beams, 2004, 7(7): 070401.
[14] 陈志强. 电磁脉冲模拟装置用同轴薄膜电容器关键技术研究[D]. 西安: 西安交通大学, 2020. CHEN Z Q. Study on key technologies of coaxial film capacitor for electromagnetic pulse simulator [D]. Xi'an: Xi'an Jiaotong University, 2020. (in Chinese)
[15] WANG T C, HUANG T, WANG H Y, et al. Using self-triggered sustaining pre-ionization to obtain nanosecond jitter in a MV pulsed gas switch [J]. IEEE Transactions on Plasma Science, 2021, 49(12): 4034-4037.
[16] WANG T C, LI J N, WANG H Y, et al. Optical diagnosis of preionization mechanisms and breakdown characteristics in a nanosecond switch [J]. IEEE Transactions on Plasma Science, 2022, 50(6): 1912-1926.
[1] 廉玉波, 刘云卿, Zhang Charles, 张荣荣. 混合动力车辆加速工况发动机介入抖动的分析与优化[J]. 清华大学学报(自然科学版), 2024, 64(3): 552-561.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn