Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2023, Vol. 63 Issue (1): 44-51    DOI: 10.16511/j.cnki.qhdxxb.2022.21.030
  机械工程 本期目录 | 过刊浏览 | 高级检索 |
罗治军1,2, 阎绍泽1
1. 清华大学 机械工程学院, 北京 100084;
2. 中国人民解放军 96963部队博士创新工作站, 北京 100084
Joint surface model based on total reflection optical image
LUO Zhijun1,2, YAN Shaoze1
1. School of Mechanics, Tsinghua University, Beijing 100084, China;
2. PhD Innovation Workstation of Unit 96963 of China People's Liberation Army, Beijing 100084, China
全文: PDF(8393 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 机械结构结合面的接触特性对刚度、阻尼等动态特性都有非常重要的影响。至今,已有许多结合面模型被提出,但仍存在理论上的争议,有的甚至存在完全相反的物理解释。该文采用全反射方法,利用图像处理技术,对聚甲基丙烯酸甲酯(PMMA)结合面接触斑点在正压力作用下的演化过程进行研究。研究表明接触斑点在法向力作用下变化规律呈现3个阶段,1阶段为轻载下的线性增长区,2、3阶段为重载下的非线性增长区。轻载状态下,接触斑点数目及接触面积变化规律与GW (Greenwood&Williamson)模型给出的物理解释一致,与MB (Majumdar&Bhushan)模型相差较大。重载状态下,GW模型、MB模型都不能给出有效的物理解释。重载下的基体变形会导致接真实触面积下降,若能有效模拟基体变形造成的影响,将可获得更准确的接触模型。
E-mail Alert
关键词 真实接触面接触模型GW模型MB模型    
Abstract:The joint contact characteristics of mechanical structures strongly influence the stiffness, damping and other dynamic characteristics. Many contact models have been developed, but they are based on different theoretical models with some even giving diametrically opposed physical interpretations. This study used the total reflection method and image processing to study the evolution of polymethyl methacrylate (PMMA) contact spots loaded with positive pressures. The observations show that the variation of contact spots under normal force has three stages: the first stage is the linear increasing region under light loads, the second and third stages are the nonlinear increasing region under heavy loads. With light loads, the number of contact spots and the contact area are consistent with those predicted by the Greenwood-Williamson (GW) model, but differ from those predicted by the Majumdar-Bhushan (MB) model. With heavy loads, the GW and MB models both cannot adequately predict the physical characteristics due to the bulk deformation with heavy loads leading to smaller actual contact areas. Thus, more accurate contact model would be obtained when the influence of the bulk deformation is considered.
Key wordsreal contact area    contact model    GW model    MB model
收稿日期: 2022-04-30      出版日期: 2023-01-11
罗治军, 阎绍泽. 基于全反射光学图像的结合面模型[J]. 清华大学学报(自然科学版), 2023, 63(1): 44-51.
LUO Zhijun, YAN Shaoze. Joint surface model based on total reflection optical image. Journal of Tsinghua University(Science and Technology), 2023, 63(1): 44-51.
链接本文:  或
[1] 温淑花, 张学良, 陈永会, 等. 结合面切向接触等效黏性阻尼分形模型[J]. 西安交通大学学报, 2017, 51(1): 1-8, 50. WEN S H, ZHANG X L, CHEN Y H, et al. Fractal model of equivalent viscous damping for tangential contact in joint interfaces[J]. Journal of Xi'an Jiaotong University, 2017, 51(1): 1-8, 50. (in Chinese)
[2] 李辉光, 刘恒, 虞烈. 粗糙机械结合面的接触刚度研究[J]. 西安交通大学学报, 2011, 45(6): 69-74. LI H G, LIU H, YU L. Contact stiffness of rough mechanical joint surface[J]. Journal of Xi'an Jiaotong University, 2011, 45(6): 69-74. (in Chinese)
[3] BOWDEN F P, TABOR D. The area of contact between stationary and moving surfaces[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1939, 169(938): 391-413.
[4] GREENWOOD J A, WILLIAMSON J B P. Contact of nominally flat surfaces[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1966, 295(1442): 300-319.
[5] WHITEHOUSE D J, ARCHARD J F. The properties of random surfaces of significance in their contact[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1970, 316(1524): 97-121.
[6] ONIONS R A, ARCHARD J F. The contact of surfaces having a random structure[J]. Journal of Physics D: Applied Physics, 1973, 6(3): 289-304.
[7] MAJUMDAR A, BHUSHAN B. Fractal model of elastic-plastic contact between rough surfaces[J]. Journal of Tribology, 1991, 113(1): 1-11.
[8] KOGUT L, ETSION I. Elastic-plastic contact analysis of a sphere and a rigid flat[J]. Journal of Applied Mechanics, 2002, 69(5): 657-662.
[9] CHANG W R, ETSION I, BOGY D B. An elastic-plastic model for the contact of rough surfaces[J]. Journal of Tribology, 1987, 109(2): 257-263.
[10] ZHAO Y W, MAIETTA D M, CHANG L. An asperity microcontact model incorporating the transition from elastic deformation to fully plastic flow[J]. Journal of Tribology, 2000, 122(1): 86-93.
[11] RUBINSTEIN S M, COHEN G, FINEBERG J. Detachment fronts and the onset of dynamic friction[J]. Nature, 2004, 430(7003): 1005-1009.
[12] RUBINSTEIN S M, COHEN G, FINEBERG J. Visualizing stick–slip: Experimental observations of processes governing the nucleation of frictional sliding[J]. Journal of Physics D: Applied Physics, 2009, 42(21): 214016.
[13] RUBINSTEIN S M, COHEN G, FINEBERG J. Dynamics of precursors to frictional sliding[J]. Physical Review Letters, 2007, 98(22): 226103.
[14] BEN-DAVID O, RUBINSTEIN S M, FINEBERG J. Slip-stick and the evolution of frictional strength[J]. Nature, 2010, 463(7277): 76-79.
[15] SONG B J, YAN S Z. Relationship between the real contact area and contact force in pre-sliding regime[J]. Chinese Physics B, 2017, 26(7): 074601.
[16] KRICK B A, VAIL J R, PERSSON B N J, et al. Optical in situ micro tribometer for analysis of real contact area for contact mechanics, adhesion, and sliding experiments[J]. Tribology Letters, 2012, 45(1): 185-194.
[17] EGUCHI M, HIRAYANAGI T, MIYOSHI T. Statistical measurement of real contact area on the basis of image intensity histograms (Part 2): Application to paper-based wet friction materials[J]. Journal of Japanese Society of Tribologists, 2012, 57(5): 353-360.
[18] SONG B J, YAN S Z, XIANG W W K. A measurement method for distinguishing the real contact area of rough surfaces of transparent solids using improved Otsu technique[J]. Chinese Physics B, 2015, 24(1): 014601.
[19] 洪向共, 周世芬. 基于改进模糊C均值聚类的光伏面板红外图像分割[J]. 计算机系统应用, 2019, 28(5): 35-41. HONG X G, ZHOU S F. Infrared image segmentation of photovoltaic panel based on improved fuzzy C-means clustering[J]. Computer Systems & Applications, 2019, 28(5): 35-41. (in Chinese)
[20] OTSU N. An automatic threshold selection method based on discriminate and least squares criteria[J]. Denshi Tsushin Gakkai Ronbunshi, 1979, 63: 349-356.
[21] SAUVOLA J, PIETIKÄINEN M. Adaptive document image binarization[J]. Pattern Recognition, 2000, 33(2): 225-236.
[22] NIBLACK W. An introduction to digital image processing[M]. Birkeroed, Denmark: Strandberg Publishing Company, 1985.
[23] 石为人, 方莉, 陈舒涵. 基于改进Otsu和Niblack的图像二值化方法[J]. 世界科技研究与发展, 2013, 35(3): 395-398. SHI W R, FANG L, CHEN S H. Algorithm for image binarization based on improved Otsu and Niblack[J]. World Sci-Tech R&D, 2013, 35(3): 395-398. (in Chinese)
[24] LAZZARA G, GÉRAUD T. Efficient multiscale Sauvola's binarization[J]. International Journal on Document Analysis and Recognition (IJDAR), 2014, 17(2): 105-123.
[25] MORAG Y, ETSION I. Resolving the contradiction of asperities plastic to elastic mode transition in current contact models of fractal rough surfaces[J]. Wear, 2007, 262(5-6): 624-629.
[26] PERSSON B N J, TOSATTI E. The effect of surface roughness on the adhesion of elastic solids[J]. The Journal of Chemical Physics, 2001, 115(12): 5597-5610.
[27] POHRT R, POPOV V L. Contact stiffness of randomly rough surfaces[J]. Scientific Reports, 2013, 3: 3293.
[28] ZHAO Y W, CHANG L. A model of asperity interactions in elastic-plastic contact of rough surfaces[J]. Journal of Tribology, 2001, 123(4): 857-864.
[29] CIAVARELLA M, GREENWOOD J A, PAGGI M. Inclusion of “interaction” in the Greenwood and Williamson contact theory[J]. Wear, 2008, 265(5-6): 729-734.
[1] 常旭, 杨东超, 孙可平, 朱衡, 杨淇耀. 爬行器驱动轮正压过程分析[J]. 清华大学学报(自然科学版), 2019, 59(7): 537-543.
[2] 孙可平, 杨东超, 常旭, 朱衡, 鲁沛昕, 陈恳. 爬行器驱动轮与套管管壁斜压过程分析[J]. 清华大学学报(自然科学版), 2019, 59(12): 1016-1028.
Full text



版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持