Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2023, Vol. 63 Issue (1): 94-103    DOI: 10.16511/j.cnki.qhdxxb.2022.22.041
  电机工程 本期目录 | 过刊浏览 | 高级检索 |
基于DSIM仿真的多端口电力电子变压器损耗分析
樊志强, 赵争鸣, 施博辰, 虞竹珺, 郑嘉霖
清华大学 电机工程与应用电子技术系, 北京 100084
Loss analyses of multi-port power electronic transformers based on DSIM simulations
FAN Zhiqiang, ZHAO Zhengming, SHI Bochen, YU Zhujun, ZHENG Jialin
Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(5016 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 多端口电力电子变压器正成为新一代电网的关键设备,但其损耗建模和解算非常困难。DSIM软件适用于复杂结构电力电子变换器仿真解算,尤其是电力电子变压器。针对多端口电力电子变压器,该文进行了比较全面的损耗分析,并且例证了DSIM软件在复杂电力电子变换器系统损耗分析方面的有效性。建立了电力电子变压器损耗模型,通过仿真和实验验证了所提出的模型的准确性和有效性。结果表明:单台电力电子变压器具有最优效率点;对于两台电力电子变压器集群运行,轻载时只运行单台电力电子变压器效率最优,重载时两台电力电子变压器同时运行效率最优。该文对损耗模型的分析,可以为电力电子变压器运行效率优化提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
樊志强
赵争鸣
施博辰
虞竹珺
郑嘉霖
关键词 电力电子变压器损耗分析DSIM电力电子仿真电网    
Abstract:Multi-port power electronic transformers (PET) are key parts of modern power grids, but their losses are difficult to model. DSIM simulations are useful for complex power electronic converters, especially PET simulations. This study analyzed the losses in a multi-port PET which showed the effectiveness of DSIM software for analyzing complex power electronic converter systems. This paper described the PET loss model which was then validated by simulations and experiments. The results show the optimum efficiency operating point of a single PET. When two PETs are available, one PET in operation is the most efficient for light loads and two PETs in operation are the most efficient for heavy loads. This loss model analysis provides a reference for optimizing the efficiency of PET operations.
Key wordspower electronic transformer    loss analysis    power electronic simulations with DSIM    power grid
收稿日期: 2022-03-02      出版日期: 2023-01-11
基金资助:赵争鸣,教授,E-mail:zhaozm@tsinghua.edu.cn
引用本文:   
樊志强, 赵争鸣, 施博辰, 虞竹珺, 郑嘉霖. 基于DSIM仿真的多端口电力电子变压器损耗分析[J]. 清华大学学报(自然科学版), 2023, 63(1): 94-103.
FAN Zhiqiang, ZHAO Zhengming, SHI Bochen, YU Zhujun, ZHENG Jialin. Loss analyses of multi-port power electronic transformers based on DSIM simulations. Journal of Tsinghua University(Science and Technology), 2023, 63(1): 94-103.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2022.22.041  或          http://jst.tsinghuajournals.com/CN/Y2023/V63/I1/94
  
  
  
  
  
  
  
  
[1] ZHANG J P, LIU J Q, YANG J X, et al. A modified DC power electronic transformer based on series connection of full-bridge converters[J]. IEEE Transactions on Power Electronics, 2019, 34(3): 2119-2133.
[2] PENG Z R, WANG G S, ZHAI X F, et al. Optimum design of high frequency transformer based on winding spacing[C]// 201922nd International Conference on Electrical Machines and Systems (ICEMS). Harbin, China, 2019: 1-6.
[3] LIU B, WU W H, ZHOU C X, et al. An AC-DC hybrid multi-port energy router with coordinated control and energy management strategies[J]. IEEE Access, 2019, 7: 109069-109082.
[4] SHEN Y, ZHU F J, ZHANG C P, et al. Steady-state model of multi-port electric energy router and power flow analysis method of AC/DC hybrid system considering control strategies[J]. The Journal of Engineering, 2019, 2019(16): 2794-2799.
[5] BOLTE S, FRÖHLEKE N, BÖCKER J. DC-DC converter design for power distribution systems in electric vehicles using calorimetric loss measurements[C]// 201618th European Conference on Power Electronics and Applications (EPE'16 ECCE Europe). Karlsruhe, Germany, 2016: 1-7.
[6] SADIGH A K, DARGAHI V, CORZINE K A. Analytical determination of conduction and switching power losses in flying-capacitor-based active neutral-point-clamped multilevel converter[J]. IEEE Transactions on Power Electronics, 2016, 31(8): 5473-5494.
[7] ABRAHAM Y H, XIAO W Q, WEN H Q, et al. Estimating power losses in dual active bridge DC-DC converter[C]// 20112nd International Conference on Electric Power and Energy Conversion Systems (EPECS). Sharjah, United Arab Emirates, 2011.
[8] XU X X, TAI N L, HU Y, et al. Study on optimal operation of multi-port cascaded power electronic transformer cluster[C]// 2019 IEEE Sustainable Power and Energy Conference (iSPEC). Beijing, China, 2019.
[9] WANG S K, LIU J J, LIU Z, et al. A hierarchical operation strategy of parallel inverters for efficiency improvement and voltage stabilization in microgrids[C]// 2016 IEEE 2nd Annual Southern Power Electronics Conference (SPEC). Auckland, New Zealand, 2016.
[10] SOLTAU N, EGGERS D, HAMEYER K, et al. Iron losses in a medium-frequency transformer operated in a high-power DC-DC converter[J]. IEEE Transactions on Magnetics, 2014, 50(2): 7023604.
[11] SHI B C, ZHAO Z M, JU J H, et al. Switching transient simulation and system efficiency evaluation of megawatt power electronics converter with discrete state event-driven approach[J]. IEEE Transactions on Industrial Electronics, 2022, 69(3): 2180-2190.
[12] SHI B C, CHEN Y L, CHEN K N, et al. Event-driven approach with time-scale hierarchical automaton for switching transient simulation of SiC-based high-frequency converter[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2021, 68(11): 4746-4759.
[13] SHI B C, JI S Q, ZHAO Z M, et al. Discrete-state event-driven numerical prototyping of megawatt solid-state transformers and AC/DC hybrid microgrids[J]. IEEE Access, 2021, 9: 108329-108339.
[14] SHI B C, ZHAO Z M, ZHU Y C, et al. Time-domain and frequency-domain analysis of SiC MOSFET switching transients considering transmission of control, drive, and power pulses[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9(5): 6441-6452.
[15] SHI B C, ZHAO Z M, ZHU Y C, et al. Discrete state event-driven simulation approach with a state-variable- interfaced decoupling strategy for large-scale power electronics systems[J]. IEEE Transactions on Industrial Electronics, 2021, 68(12): 11673-11683.
[16] SHI B C, ZHAO Z M, ZHU Y C. Piecewise analytical transient model for power switching device commutation unit[J]. IEEE Transactions on Power Electronics, 2019, 34(6): 5720-5736.
[17] 施博辰, 赵争鸣, 朱义诚, 等. 电力电子混杂系统多时间尺度离散状态事件驱动仿真方法[J]. 中国电机工程学报, 2021, 41(9): 2980-2989. SHI B C, ZHAO Z M, ZHU Y C, et al. Discrete-state event-driven simulation approach for multi-time-scale power electronic hybrid system[J]. Proceedings of the CSEE, 2021, 41(9): 2980-2989. (in Chinese)
[18] 施博辰, 赵争鸣, 朱义诚, 等. 离散状态事件驱动仿真方法在高压大容量电力电子变换系统中的应用[J]. 高电压技术, 2019, 45(7): 2053-2061. SHI B C, ZHAO Z M, ZHU Y C, et al. Application of discrete state event-driven simulation framework in high-voltage power electronic hybrid systems[J]. High Voltage Engineering, 2019, 45(7): 2053-2061. (in Chinese)
[19] 文武松, 赵争鸣, 莫昕, 等. 基于高频汇集母线的电能路由器能量自循环系统及功率协同控制策略[J]. 电工技术学报, 2020, 35(11): 2328-2338. WEN W S, ZHAO Z M, MO X, et al. Energy self-circulation scheme and power coordinated control of high-frequency-bus based electric energy router[J]. Transactions of China Electrotechnical Society, 2020, 35(11): 2328-2338. (in Chinese)
[20] 文武松, 赵争鸣, 袁立强, 等. 电能路由器公共高频母线超瞬态过程机理及抑制措施[J]. 中国电机工程学报, 2021, 41(15): 5283-5293. WEN W S, ZHAO Z M, YUAN L Q, et al. Mechanism and suppression strategy of the ultra-transient behavior of high-frequency-bus in electric energy router[J]. Proceedings of the CSEE, 2021, 41(15): 5283-5293. (in Chinese)
[21] 蔡伟谦, 沈瑜, 李凯, 等. 共高频交流母线的电能路由器直流端口控制策略[J]. 电网技术, 2020, 44(12): 4600-4607. CAI W Q, SHEN Y, LI K, et al. DC port control strategy for electric energy router with high frequency AC link[J]. Power System Technology, 2020, 44(12): 4600-4607. (in Chinese)
[22] YUE Q Y, LI C B, CAO Y J, et al. Comprehensive power losses model for electronic power transformer[J]. IEEE Access, 2018, 6: 14926-14934.
[23] ZHENG J L, ZHAO Z M, SHI B C, et al. A discrete state event driven simulation based losses analysis for multi-terminal megawatt power electronic transformer[J]. CES Transactions on Electrical Machines and Systems, 2020, 4(4): 275-284.
[24] 岳全有. 电子电力变压器的综合损耗分析模型及其应用[D]. 长沙: 湖南大学. YUE Q Y. Comprehensive power losses model for electronic power transformer and its application[D]. Changsha, China: Hunan University. (in Chinese)
[1] 史政一, 黄弘, 周诗伟. 基于风险容忍度的城市供水与供电网络关联性[J]. 清华大学学报(自然科学版), 2023, 63(10): 1576-1583.
[2] 马千里, 魏韡, 毛航银, 梅生伟. 分布式电源接入的微电网小干扰鲁棒稳定判据与参数安全域自适应覆盖算法[J]. 清华大学学报(自然科学版), 2021, 61(5): 385-394.
[3] 和敬涵, 张可欣, 李猛, 聂铭, 宋元伟. 基于深度学习的柔性直流线路单端量波形特征保护[J]. 清华大学学报(自然科学版), 2021, 61(5): 478-486.
[4] 江克证, 朱建行, 胡家兵, 汪海蛟. 计及开关过程的LCC-HVDC小信号建模及其对电力系统电磁尺度稳定性分析[J]. 清华大学学报(自然科学版), 2021, 61(5): 395-402.
[5] 宋国兵, 张宇轩, 张晨浩, 侯俊杰, 徐瑞东. 换流站传递特性及其对交直流电网保护影响[J]. 清华大学学报(自然科学版), 2021, 61(5): 465-477.
[6] 聂浩哲, 沈瑜, 赵争鸣, 文武松, 袁立强. 四端口电力电子变压器高压交流端口的低电压穿越功能[J]. 清华大学学报(自然科学版), 2021, 61(10): 1097-1105.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn