Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2023, Vol. 63 Issue (10): 1502-1511    DOI: 10.16511/j.cnki.qhdxxb.2023.22.040
  公共安全 本期目录 | 过刊浏览 | 高级检索 |
正向风作用下的对开口腔室火灾行为
段君瑞, 何明铭, 胡皓玮, 纪杰
中国科学技术大学 火灾科学国家重点实验室, 合肥 230026
Compartment fire behavior with two opposite openings under crosswind
DUAN Junrui, HE Mingming, HU Haowei, JI Jie
State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, China
全文: PDF(9957 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 为了系统揭示正向风作用下对开口腔室火灾行为的演化机理,该文建立了更符合实际的腔室火灾场景,开展了相应的数值模拟和理论分析,研究了正向风风速对迎风侧、背风侧的火溢流行为、腔室内部温度以及腔室气体流动方式的影响。结果表明:随着风速的增加,通风控制下腔室迎风侧的火溢流会逐渐消失。之后,背风侧的火溢流也会逐渐消失。火溢流发生的临界判据为全局当量比等于0.645。当全局当量比小于等于0.645时,燃烧只发生在腔室内部;当全局当量比大于0.645时,腔室外部开始出现火溢流。在燃料控制状态下,腔室内部的平均温度随着风速的增大不断降低。结合腔室内外的能量守恒方程,通过量纲分析,建立了正向风作用下燃料控制状态腔室内平均温升模型。基于迎风侧和背风侧与腔室内的压差,建立了腔室气体由双向流动转化为单向流动的临界风速表达式。当风速小于临界风速时,腔室两侧开口气流存在双向流动;当风速大于等于临界风速时,腔室两侧开口气流为单向流动。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
段君瑞
何明铭
胡皓玮
纪杰
关键词 腔室火正向风腔室温度热释放速率火溢流    
Abstract:[Objective] External wind almost always exists around high-rise buildings. Due to the superimposed or competitive effect of wind pressure, buoyancy, and thermal expansion, the fire behaviors in high-rise building enclosures with two openings exhibit more complex dynamic evolution characteristics than those without external wind effects. In situations with such effects, new models are required to systematically analyze the fire behavior evolution mechanism. [Methods] In this study, we established a more practical compartment fire scenario and performed numerical analyses using the computational fluid dynamics (CFD) code, fire dynamics simulator (FDS), to study the evolution of the fire behavior of a compartment with two opposite openings. A total of 48 simulations were performed, wherein different wind speeds and heat release rates were considered. The fire source was a propane burner in the center of the compartment. The simulation duration was set at 350 s. The use of numerical simulations opened up the potential for a direct evaluation of a wide range of variables (e.g., the mass rate of inflow and outflow through openings and temperature) and even more complex quantities (e.g., the heat release rate within predefined volumes such as windward side space, leeward side space, and space inside the compartment). To obtain accurate simulations, sensitivity analysis was performed. The impact of crosswind speed on the behavior of fire spill plume on the windward and leeward sides, the temperature inside the compartment, and the flow pattern across the two openings were analyzed. Combined with the energy conservation equation, the average temperature rise model inside the compartment at over-ventilated conditions under the crosswind was established based on dimensional analysis. A critical wind speed (vc) was determined for the conversion of gas from bidirectional to unidirectional flow according to the pressure differences among the windward side, the compartment, and the leeward side. [Results] This study finds that a uniform mesh size of 2 cm is sufficient to achieve convergence. The results indicate that (1) the fire spill plume on the windward side at under-ventilated conditions gradually disappears as the wind speed (v) increases. Afterward, the fire spill plume on the leeward side also disappears gradually. At the same time, the heat release rate inside the compartment gradually increases. The critical criterion for the occurrence of the fire spill plume is that the global equivalence ratio Φ equals 0.645. When Φ≤0.645, combustion occurs only within the compartment. When Φ>0.645, the fire spill plume appears outside the compartment. (2) As the wind speed increases, the average temperature within the compartment constantly decreases at under-ventilated conditions and constantly increases at over-ventilated conditions. When v<vc, there is a bidirectional flow through the openings on the windward or leeward side; when vvc, the flow through the openings on both sides is unidirectional. The accuracy of the critical wind speed model is further verified based on an analysis of the mass flow rate through the openings on both sides. [Conclusions] The outcomes and findings of this study will help improve the existing theories of enclosure fire dynamics and provide theoretical and technical support for the fire protection of high-rise buildings.
Key wordscompartment fire    crosswind    temperature inside compartment    heat release rate    fire spill flame
收稿日期: 2023-05-04      出版日期: 2023-09-01
基金资助:国家自然科学基金面上项目(51976211)
通讯作者: 纪杰,研究员,E-mail:jijie232@ustc.edu.cn     E-mail: jijie232@ustc.edu.cn
作者简介: 段君瑞(1995-),女,博士后。
引用本文:   
段君瑞, 何明铭, 胡皓玮, 纪杰. 正向风作用下的对开口腔室火灾行为[J]. 清华大学学报(自然科学版), 2023, 63(10): 1502-1511.
DUAN Junrui, HE Mingming, HU Haowei, JI Jie. Compartment fire behavior with two opposite openings under crosswind. Journal of Tsinghua University(Science and Technology), 2023, 63(10): 1502-1511.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2023.22.040  或          http://jst.tsinghuajournals.com/CN/Y2023/V63/I10/1502
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] 国家消防救援局. 2022年全国警情与火灾情况[EB/OL].(2023-03-24)[2023-04-28] . https://www.119.gov.cn/qmxfxw/xfyw/2023/36210.shtml. National Fire and Rescue Administration. National police incidents and fire situations in 2022[EB/OL].(2023-03-24)[2023-04-28] . https://www.119.gov.cn/qmxfxw/xfyw/2023/36210.shtml.(in Chinese)
[2] JI J, LI M, LI K Y, et al. Ambient wind effect on combustion characteristics in compartment with simultaneous door and window opened[J]. Energy and Buildings, 2015, 105:217-225.
[3] LI M, GAO Z H, JI J, et al. Wind effects on flame projection probability from a compartment with opposing openings[J]. Fire Safety Journal, 2017, 91:414-421.
[4] KARLSSON B, QUINTIERE J G. Enclosure fire dynamics[M]. 2nd ed. Boca Raton:CRC Press, 2022.
[5] MCCAFFREY B J, QUINTIERE J G, HARKLEROAD M F. Estimating room temperatures and the likelihood of flashover using fire test data correlations[J]. Fire Technology, 1981, 17(2):98-119.
[6] QUINTIERE J G. Fundamentals of fire phenomena[M]. Chichester:John Wiley&Sons, 2006.
[7] DRYSDALE D. An introduction to fire dynamics[M]. 3rd ed. Hoboken:John Wiley&Sons, 2011.
[8] LAFDAL B, DJEBBAR R, BOULET P, et al. Numerical study of the combustion regimes in naturally-vented compartment fires[J]. Fire Safety Journal, 2022, 131:103604.
[9] KLOPOVIC S. Experimental and computational study of flames venting externally during full scale flashover fires[D]. Melbourne:Victoria University of Technology, 1999.
[10] 邱曾维.开口火溢流的火焰宽度与厚度演化规律与模型研究[D].合肥:中国科学技术大学, 2015. QIU Z W. Studies on evolution and model of flame width and depth of ejected flame from ventilation control enclosure fire[D]. Hefei:University of Science and Technology of China, 2015.(in Chinese)
[11] LEE Y P. Heat fluxes and flame heights on external facades from enclosure fires[D]. New townabbey:University of Ulster, 2006.
[12] LEE Y P, DELICHATSIOS M A, SILCOCK G W H. Heat fluxes and flame heights in façades from fires in enclosures of varying geometry[J]. Proceedings of the Combustion Institute, 2007, 31(2):2521-2528.
[13] POREH M, TREBUKOV S. Wind effects on smoke motion in buildings[J]. Fire Safety Journal, 2000, 35(3):257-273.
[14] HUANG H, OOKA R, LIU N A, et al. Experimental study of fire growth in a reduced-scale compartment under different approaching external wind conditions[J]. Fire Safety Journal, 2009, 44(3):311-321.
[15] CHEN H X, LIU N A, CHOW W K. Wind tunnel tests on compartment fires with crossflow ventilation[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2011, 99(10):1025-1035.
[16] 张培红,刘牧,王晓华.民用建筑物室内燃气泄漏火灾的数值模拟[J].沈阳建筑大学学报(自然科学版), 2006, 22(4):638-642. ZHANG P H, LIU M, WANG X H. Numerical simulation of gas leakage fire in residential building[J]. Journal of Shenyang Jianzhu University (Natural Science), 2006, 22(4):638-642.(in Chinese)
[17] 梁振涛,李思成,陈旺海涛,等.室外风对火焰特征影响的数值模拟研究[J].消防科学与技术, 2013, 32(9):939-941. LIANG Z T, LI S C, CHEN W H T, et al. Numerical study of wind effects on the characteristics of flame[J]. Fire Science and Technology, 2013, 32(9):939-941.(in Chinese)
[18] GAO W, LIU N A, DELICHATSIOS M, et al. Fire spill plume from a compartment with dual symmetric openings under cross wind[J]. Combustion and Flame, 2016, 167:409-421.
[19] CENTENO F R, BESHIR M, RUSH D. Influence of wind on the onset of flashover within small-scale compartments with thermally-thin and thermally-thick boundaries[J]. Fire Safety Journal, 2020, 117:103211.
[20] MCGRATTAN K B, FORNEY G P, FLOYD J, et al. Fire dynamics simulator (version 4):User's guide[M]. Washington DC:Technology Administration, US Department of Commerce, 2005.
[21] FORELL B. A methodology to assess species yields of compartment fires by means of an extended global equivalence ratio concept[D]. Braunschweig:Technische Universität Braunschweig, 2007.
[22] KAWAGOE K. Fire behaviour in rooms:Report of the Building Research Institute, No. 27[R]. Tokyo, 1958.
[23] 高威.无风及侧向风作用下的腔室开口火溢流研究[D].合肥:中国科学技术大学, 2016. GAO W. Studies on fire spill plume from a compartment opening under no wind and cross wind[D]. Hefei:University of Science and Technology of China, 2016.(in Chinese)
[24] KARLSSON B, QUINTIERE J G. Enclosure fire dynamics[M]. Boca Raton:CRC Press, 2000.
[1] 贾旭宏, 汤婧, 马俊豪, 田威, 张晓宇, 代尚沛, 丁思婕. 低气压富氧环境对典型织物燃烧特性的影响[J]. 清华大学学报(自然科学版), 2024, 64(1): 164-172.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
    PDF Preview
    
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn