Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2023, Vol. 63 Issue (11): 1791-1807    DOI: 10.16511/j.cnki.qhdxxb.2023.26.023
  低碳交通与绿色发展 本期目录 | 过刊浏览 | 高级检索 |
超临界二氧化碳离心压缩机流动特性研究进展
杨子木, 江泓升, 诸葛伟林, 钱煜平, 张扬军
清华大学 车辆与运载学院, 汽车安全与节能国家重点实验室, 北京 100084
A review of supercritical carbon dioxide centrifugal compressor flow characteristics
YANG Zimu, JIANG Hongsheng, ZHUGE Weilin, QIAN Yuping, ZHANG Yangjun
State Key Laboratory of Automotive Safety and Energy, School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China
全文: PDF(5616 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 超临界二氧化碳(supercritical carbon dioxide,S-CO2) Brayton循环是中温高压循环,采用该循环可回收利用燃气涡轮和内燃机等交通动力系统的高温排气能量,从而提高动力系统效率。压缩机高效稳定运行对S-CO2 Brayton循环的循环性能起到至关重要的作用。该文从实验、一维流动分析、三维流动特性和流动控制4个方面综述了S-CO2离心压缩机流动特性的研究进展,重点阐述了关于工质临界点附近的剧烈物性变化对压缩机内部流动带来的问题及其研究内容,同时总结了S-CO2离心压缩机流动特性的相关研究,并提出未来S-CO2离心压缩机流动特性的研究重点。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨子木
江泓升
诸葛伟林
钱煜平
张扬军
关键词 S-CO2离心压缩机一维流动三维流动特性流动控制临界点    
Abstract:[Significance] The supercritical carbon dioxide (S-CO2) Brayton cycle is a power cycle at intermediate temperature and high pressure. This cycle is considered an important solution to improving the efficiency of traffic power systems such as gas turbines and internal combustion engines by recycling exhaust energy at high temperatures. The compressor is considered one of the most important components of this cycle. Its efficient and stable operation plays an important role in cycle performance. [Progress] In this paper, the research progress on S-CO2 centrifugal compressor flow characteristics was reviewed from four aspects: experiment, one-dimensional flow analysis, three-dimensional flow characteristics, and flow control. Researchers learned from the experimental studies of the S-CO2 centrifugal compressor that the special thermophysical properties of S-CO2, particularly their dramatic change near the critical point, brought great challenges to the design and stable operation of this compressor. Therefore, the problems of compressor flow caused by the drastic physical properties change near the critical point of the working medium, and the related research contents were emphatically expounded. The current research on one-dimensional flow analysis of the S-CO2 centrifugal compressor is mainly conducted by the one-dimensional mean streamline method considering the special thermophysical properties of S-CO2 fluid. The preliminary aerodynamic design of the S-CO2 centrifugal compressor was conducted using one-dimensional flow analysis. This method is limited by its prediction accuracy under off-design conditions. In addition, the flow details inside the compressor could not be obtained by this method. To reveal the flow mechanism of the S-CO2 centrifugal compressor, its three-dimensional flow characteristics must be deeply understood, and its internal flow field information must be obtained. The research on the three-dimensional flow characteristics of the S-CO2 centrifugal compressor was mostly conducted by the computational fluid dynamics (CFD) numerical simulation method, which can be used to obtain the flow field of the centrifugal compressor and present the relevant flow phenomenon. Because of the drastic variations in the thermophysical properties of S-CO2 fluid near the critical point, special consideration was taken in the process of the CFD simulation of the flow inside the centrifugal compressor. By applying CFD to S-CO2 centrifugal compressor three-dimensional flow characteristics, researchers found that this special thermal physical property also brought special flow phenomena inside the flow domain of the S-CO2 centrifugal compressor. The research on S-CO2 centrifugal compressor three-dimensional flow characteristics mainly focused on its steady flow and needs to further reveal deeply and comprehensively the flow mechanism of the S-CO2 centrifugal compressor under various unsteady working conditions. The flow control of the S-CO2 centrifugal compressor was mainly by the passive flow control method using the relevant control method of the air compressor for reference, and its effect was remarkable. As for the active flow control method, few studies have heeded its effect on the S-CO2 centrifugal compressor. [Conclusions and Prospects] In this paper, the flow characteristics of the S-CO2 centrifugal compressor are summarized, and their research prospects are proposed. These flow characteristics are considerably different from those of centrifugal compressors with conventional fluids, mainly because of the special physical properties of S-CO2 fluid. In the future, more advanced research methods are expected to be used, such as visual flow experiments, one-dimensional flow analysis incorporating machine learning algorithms, and active flow control, to conduct more in-depth and comprehensive studies of S-CO2 compressor flow characteristics.
Key wordssupercritical carbon dioxide centrifugal compressor    one-dimensional flow    three-dimensional flow characteristics    flow control    critical point
收稿日期: 2022-12-25      出版日期: 2023-10-16
基金资助:国家重点研发计划项目(2020YFB1901702)
通讯作者: 诸葛伟林,副研究员,E-mail:zhugewl@tsinghua.edu.cn     E-mail: zhugewl@tsinghua.edu.cn
引用本文:   
杨子木, 江泓升, 诸葛伟林, 钱煜平, 张扬军. 超临界二氧化碳离心压缩机流动特性研究进展[J]. 清华大学学报(自然科学版), 2023, 63(11): 1791-1807.
YANG Zimu, JIANG Hongsheng, ZHUGE Weilin, QIAN Yuping, ZHANG Yangjun. A review of supercritical carbon dioxide centrifugal compressor flow characteristics. Journal of Tsinghua University(Science and Technology), 2023, 63(11): 1791-1807.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2023.26.023  或          http://jst.tsinghuajournals.com/CN/Y2023/V63/I11/1791
  
  
  
  
  
  
  
  
  
[1] BRUN K, FRIEDMAN P, DENNIS R. Fundamentals and applications of supercritical carbon dioxide (S-CO2) based power cycles[M]. Cambridge:Woodhead Publishing, 2017.
[2] CHA J E, PARK J H, LEE G, et al. 500 kW supercritical CO2 power generation system for waste heat recovery:System design and compressor performance test results[J]. Applied Thermal Engineering, 2021, 194:117028.
[3] WANG D, CHEN H, WANG T J, et al. Study on configuration of gas-supercritical carbon dioxide combined cycle under different gas turbine power[J]. Energy Reports, 2022, 8:5965-5973.
[4] NAMI H, MAHMOUDI S M S, NEMATI A. Exergy, economic and environmental impact assessment and optimization of a novel cogeneration system including a gas turbine, a supercritical CO2 and an organic Rankine cycle (GT-HRSG/S-CO2)[J]. Applied Thermal Engineering, 2017, 110:1315-1330.
[5] MOHAMMADI K, ELLINGWOOD K, POWELL K. Novel hybrid solar tower-gas turbine combined power cycles using supercritical carbon dioxide bottoming cycles[J]. Applied Thermal Engineering, 2020, 178:115588.
[6] ROY D, SAMANTA S, GHOSH S. Performance assessment of a biomass-fuelled distributed hybrid energy system integrating molten carbonate fuel cell, externally fired gas turbine and supercritical carbon dioxide cycle[J]. Energy Conversion and Management, 2020, 211:112740.
[7] LIANG Y C, BIAN X Y, QIAN W W, et al. Theoretical analysis of a regenerative supercritical carbon dioxide Brayton cycle/organic Rankine cycle dual loop for waste heat recovery of a diesel/natural gas dual-fuel engine[J]. Energy Conversion and Management, 2019, 197:111845.
[8] GüMüŞ E. Alternative to ship diesel engine:S-CO2 power cycle[J]. Journal of ETA Maritime Science, 2019, 7(2):117-126.
[9] WU C, XU X X, LI Q B, et al. Proposal and assessment of a combined cooling and power system based on the regenerative supercritical carbon dioxide Brayton cycle integrated with an absorption refrigeration cycle for engine waste heat recovery[J]. Energy Conversion and Management, 2020, 207:112527.
[10] ZHANG R Y, SU W, LIN X X, et al. Thermodynamic analysis and parametric optimization of a novel S-CO2 power cycle for the waste heat recovery of internal combustion engines[J]. Energy, 2020, 209:118484.
[11] SINGH A, SINGH O. Investigations on SOFC-HAT-S-CO2 based combined power and heating cycle[J]. Materials Today:Proceedings, 2021, 38:122-128.
[12] SCHÖFFER S I, KLEIN S A, ARAVIND P V, et al. A solid oxide fuel cell-supercritical carbon dioxide Brayton cycle hybrid system[J]. Applied Energy, 2021, 283:115748.
[13] PENG W K, CHEN H, LIU J, et al. Techno-economic assessment of a conceptual waste-to-energy CHP system combining plasma gasification, SOFC, gas turbine and supercritical CO2 cycle[J]. Energy Conversion and Management, 2021, 245:114622.
[14] XIA L, LI X S, SONG J, et al. Design and analysis of S-CO2 cycle and radial turbine for SOFC vehicle waste-heat recovery[J]. Journal of Thermal Science, 2019, 28(3):559-570.
[15] FEHER E G. The supercritical thermodynamic power cycle[J]. Energy Conversion, 1968, 8(2):85-90.
[16] ANGELINO G. Carbon dioxide condensation cycles for power production[J]. Journal of Engineering for Power, 1968, 90(3):287-295.
[17] WHITE M T, BIANCHI G, CHAI L, et al. Review of supercritical CO2 technologies and systems for power generation[J]. Applied Thermal Engineering, 2021, 185:116447.
[18] DOSTAL V. A supercritical carbon dioxide cycle for next generation nuclear reactors[D]. Cambridge:Massachusetts Institute of Technology, 2004.
[19] DOSTAL V, HEJZLAR P, DRISCOLL M J. High-performance supercritical carbon dioxide cycle for next-generation nuclear reactors[J]. Nuclear Technology, 2006, 154(3):265-282.
[20] PARK J H, PARK H S, KWON J G, et al. Optimization and thermodynamic analysis of supercritical CO2 Brayton recompression cycle for various small modular reactors[J]. Energy, 2018, 160:520-535.
[21] MA Y G, MOROSUK T, LUO J, et al. Superstructure design and optimization on supercritical carbon dioxide cycle for application in concentrated solar power plant[J]. Energy Conversion and Management, 2020, 206:112290.
[22] BATTISTI F G, DE ARAUJO PASSOS L A, DA SILVA A K. Performance mapping of packed-bed thermal energy storage systems for concentrating solar-powered plants using supercritical carbon dioxide[J]. Applied Thermal Engineering, 2021, 183:116032.
[23] LU Q F, ZHAO J Y, FANG S C, et al. Investigation of thermodynamics of the supercritical CO2 Brayton cycle used in solar power at off-design conditions[J]. Sustainable Energy Technologies and Assessments, 2022, 52:102361.
[24] JEONG W S, LEE J I, JEONG Y H. Potential improvements of supercritical recompression CO2 Brayton cycle by mixing other gases for power conversion system of a SFR[J]. Nuclear Engineering and Design, 2011, 241(6):2128-2137.
[25] 王振川,胥蕊娜,熊超,等.超临界压力CO2竖直管内传热恶化抑制实验[J].清华大学学报(自然科学版), 2018, 58(12):1101-1106. WANG Z C, XU R N, XIONG C, et al. Experimental study on the inhibition of heat transfer deterioration of supercritical pressure CO2[J]. Journal of Tsinghua University (Science and Technology), 2018, 58(12):1101-1106.(in Chinese)
[26] 黄腾,李雪芳,柯道友,等.不同几何参数竖直蛇形管内超临界压力CO2流动与换热数值模拟[J].清华大学学报(自然科学版), 2020, 60(3):263-270. HUANG T, LI X F, CHRISTOPHER D M, et al. Numerical study of the flow and heat transfer of supercritical CO2 flowing in various vertical serpentine tubes[J]. Journal of Tsinghua University (Science and Technology), 2020, 60(3):263-270.(in Chinese)
[27] WRIGHT S A, RADEL R F, VERNON M E, et al. Operation and analysis of a supercritical CO2 Brayton cycle[R]. Albuquerque:Sandia National Laboratories, 2010.
[28] ALLISON T C, SMITH N R, PELTON R, et al. Experimental validation of a wide-range centrifugal compressor stage for supercritical CO2 power cycles[J]. Journal of Engineering for Gas Turbines and Power, 2019, 141(6):061011.
[29] HACKS A J, EL HUSSEIN I A, REN H K, et al. Experimental data of supercritical carbon dioxide (S-CO2) compressor at various fluid states[J]. Journal of Engineering for Gas Turbines and Power, 2022, 144(4):041012.
[30] SON S, CHO S K, LEE J I. Experimental investigation on performance degradation of a supercritical CO2 radial compressor by foreign object damage[J]. Applied Thermal Engineering, 2021, 183:116229.
[31] UTAMURA M, FUKUDA T, ARITOMI M. Aerodynamic characteristics of a centrifugal compressor working in supercritical carbon dioxide[J]. Energy Procedia, 2012, 14:1149-1155.
[32] 朱玉铭.超临界二氧化碳离心式压缩机研究[D].北京:中国科学院大学(中国科学院工程热物理研究所), 2020. ZHU Y M. Study on supercritical carbon dioxide centrifugal compressor[D]. Beijing:University of Chinese Academy of Sciences (Institute of Engineering Thermophysics, CAS), 2020.(in Chinese)
[33] CHO S K, SON S, LEE J, et al. Optimum loss models for performance prediction of supercritical CO2 centrifugal compressor[J]. Applied Thermal Engineering, 2021, 184:116255.
[34] HACKS A, SCHUSTER S, DOHMEN H J, et al. Turbomachine design for supercritical carbon dioxide within the S-CO2-HeRo.eu project[J]. Journal of Engineering for Gas Turbines and Power, 2018, 140(12):121017.
[35] GALVAS M R, CENTER L R. Analytical correlation of centrifugal compressor design geometry for maximum efficiency with specific speed[R]. Washington, DC:National Aeronautics and Space Administration, 1972.
[36] CONRAD O, RAIF K, WESSELS M. The calculation of performance maps for centrifugal compressors with vane-island diffusers[C]//Proceedings of the Twenty-fifth Annual International Gas Turbine Conference and Exhibit and Twenty-second Annual Fluids Engineering Conference. New York, USA:American Society of Mechanical Engineers, 1979:135-147.
[37] AUNGIER R H. Mean streamline aerodynamic performance analysis of centrifugal compressors[J]. Journal of Turbomachinery, 1995, 117(3):360-366.
[38] AUNGIER R H. Centrifugal compressors:A strategy for aerodynamic design and analysis[M]. New York:ASME Press, 2000.
[39] COPPAGE J E, DALLENBACH F, EICHENBERGER H P, et al. Study of supersonic radial compressors for refrigeration and pressurization systems[R]. Los Angeles:Airesearch Manufacturing Company, 1956.
[40] OH H W, YOON E S, CHUNG M K. An optimum set of loss models for performance prediction of centrifugal compressors[J]. Proceedings of the Institution of Mechanical Engineers, Part A:Journal of Power and Energy, 1997, 211(4):331-338.
[41] JANSEN W. A method for calculating the flow in a centrifugal impeller when entropy gradients are present[C]//Royal Society Conference on Internal Aerodynamics. London, UK:Institution of Mechanical Engineers, 1970:17.
[42] JOHNSTON J P, DEAN R C JR. Losses in vaneless diffusers of centrifugal compressors and pumps:Analysis, experiment, and design[J]. Journal of Engineering for Power, 1966, 88(1):49-60.
[43] DAILY J W, NECE R E. Chamber dimension effects on induced flow and frictional resistance of enclosed rotating disks[J]. Journal of Basic Engineering, 1960, 82(1):217-230.
[44] JAPIKSE D. Centrifugal compressor design and performance[M]. Wilder:Concepts ETI, 1996.
[45] SPAN R, WAGNER W. A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa[J]. Journal of Physical and Chemical Reference Data, 1996, 25(6):1509-1596.
[46] VESOVIC V, WAKEHAM W A, OLCHOWY G A, et al. The transport properties of carbon dioxide[J]. Journal of Physical and Chemical Reference Data, 1990, 19(3):763-808.
[47] FENGHOUR A, WAKEHAM W A, VESOVIC V. The viscosity of carbon dioxide[J]. Journal of Physical and Chemical Reference Data, 1998, 27(1):31-44.
[48] MONJE B, SÁNCHEZ D, SAVILL M, et al. A design strategy for supercritical CO2 compressors[C]//Proceedings of the ASME Turbo Expo 2014:Turbine Technical Conference and Exposition. Düsseldorf, Germany:ASME, 2014:V03BT36A003.
[49] MONGE B, SÁNCHEZ D, SAVILL M, et al. Exploring the design space of the S-CO2 power cycle compressor[C/OL].(2014-09-10)[2022-12-20]. http://sco2symposium.com/papers2014/turbomachinery/46-Sanchez.pdf.
[50] MONGE B B. Design of supercritical carbon dioxide centrifugal compressors[D]. Sevilla:Universidad de Sevilla, 2014.
[51] LEE J, LEE J I, AHN Y, et al. Design methodology of supercritical CO2 brayton cycle turbomachineries[C]//Proceedings of the ASME Turbo Expo 2012:Turbine Technical Conference and Exposition. Copenhagen, Denmark:ASME, 2012:975-983.
[52] LEE J, LEE J I, YOON H J, et al. Supercritical carbon dioxide turbomachinery design for water-cooled small modular reactor application[J]. Nuclear Engineering and Design, 2014, 270:76-89.
[53] KHADSE A, BLANCHETTE L, MOHAGHEGHI M, et al. Impact of S-CO2 properties on centrifugal compressor impeller:Comparison of two loss models for mean line analyses[C/OL].(2016-03-31)[2022-12-20]. http://sco2symposium.com/papers2016/Testing/129paper.pdf.
[54] BLANCHETTE L, KHADSE A, MOHAGHEGHI M, et al. Two types of analytical methods for a centrifugal compressor impeller for supercritical CO2 power cycles[C]//Proceedings of AIAA Propulsion and Energy Forum and Exposition 2016:14th International Energy Conversion Engineering Conference. Salt Lake City, USA:AIAA Propulsion and Energy Forum and Exposition 2016, 2016:1-14.
[55] SHAO W Y, WANG X F, YANG J G, et al. Design parameters exploration for supercritical CO2 centrifugal compressors under multiple constraints[C]//Proceedings of the ASME Turbo Expo 2016:Turbomachinery Technical Conference and Exposition. Seoul, Republic of Korea:ASME, 2016:V009T36A008.
[56] SHAO W Y, DU J, YANG J G, et al. Investigation on one-dimensional loss models for predicting performance of multistage centrifugal compressors in supercritical CO2 brayton cycle[J]. Journal of Thermal Science, 2021, 30(1):133-148.
[57] 邵文洋.超临界CO2离心压缩机多维度气动设计与分析体系中若干关键问题研究[D].大连:大连理工大学, 2020. SHAO W Y. Research on some key problems in the multidimensional aerodynamic design and analysis system of supercritical CO2 centrifugal compressors[D]. Dalian:Dalian University of Technology, 2020.(in Chinese)
[58] 崔新贵,席光,王志恒.超临界CO2离心压缩机性能预测及损失模型研究[J].风机技术, 2018, 60(5):26-33. CUI X G, XI G, WANG Z H. Research on performance prediction and loss model of supercritical CO2 centrifugal compressor[J]. Chinese Journal of Turbomachinery, 2018, 60(5):26-33.(in Chinese)
[59] EL HUSSEIN I A, HACKS A J, SCHUSTER S, et al. A design tool for supercritical CO2 radial compressors based on the two-zone model[C/OL].(2021-01-11)[2022-12-20]. DOI:10.1115/gt2020-15248.
[60] LIU Z Y, LUO W W, ZHAO Q J, et al. Preliminary design and model assessment of a supercritical CO2 compressor[J]. Applied Sciences, 2018, 8(4):595.
[61] MERONI A, ZVHLSDORF B, ELMEGAARD B, et al. Design of centrifugal compressors for heat pump systems[J]. Applied Energy, 2018, 232:139-156.
[62] BEHAFARID F, PODOWSKI M Z. Modeling and computer simulation of centrifugal CO2 compressors at supercritical pressures[J]. Journal of Fluids Engineering, 2016, 138(6):061106.
[63] CHEN H X, ZHUGE W, ZHANG Y J, et al. Effect of compressor inlet condition on supercritical carbon dioxide compressor performance[C]//Proceedings of the ASME Turbo Expo 2019:Turbomachinery Technical Conference and Exposition. Phoenix, USA:ASME, 2019:V009T38A012.
[64] ANDERSON M. Compressor map corrections for highly non-linear fluid properties[C/OL].(2021-09-16)[2022-12-20]. DOI:10.1115/gt2021-60275.
[65] 滕庚,沈昕,欧阳华,等.超临界二氧化碳离心压缩机性能预测模型研究[J].热力发电, 2020, 49(10):173-179. TENG G, SHEN X, OUYANG H, et al. Research on performance prediction model of supercritical carbon dioxide centrifugal compressor[J]. Thermal Power Generation, 2020, 49(10):173-179.(in Chinese)
[66] HUANG Y T, WANG T. Performance evaluation for S-CO2 compressor with loss models consideration[C/OL].(2020-10-12)[2022-12-20]. DOI:10.1115/fedsm2020-20230.
[67] CLEMENTONI E. Comparison of compressor performance map predictions to test data for a supercritical carbon dioxide brayton power system[C/OL].(2021-09-16)[2022-12-20]. DOI:10.1115/gt2021-58763.
[68] UYSAL S C, LIESE E. Radial compressor design and off-design for trans-critical CO2 operating conditions[C/OL].(2022-02-24)[2022-12-20]. https://sco2symposium.com/proceedings2022/161-paper.pdf.
[69] ZHANG Y D, PENG M J, XIA G L, et al. Performance analysis of S-CO2 recompression Brayton cycle based on turbomachinery detailed design[J]. Nuclear Engineering and Technology, 2020, 52(9):2107-2118.
[70] YAO L C, ZOU Z P. A one-dimensional design methodology for supercritical carbon dioxide Brayton cycles:Integration of cycle conceptual design and components preliminary design[J]. Applied Energy, 2020, 276:115354.
[71] WANG J F, GUO Y M, ZHOU K H, et al. Design and performance analysis of compressor and turbine in supercritical CO2 power cycle based on system-component coupled optimization[J]. Energy Conversion and Management, 2020, 221:113179.
[72] LI H, JU Y P, ZHANG C H. Optimization of supercritical carbon dioxide recompression Brayton cycle considering anti-condensation design of centrifugal compressor[J]. Energy Conversion and Management, 2022, 254:115207.
[73] XIA W K, ZHANG Y C, YU H B, et al. Aerodynamic design and multi-dimensional performance optimization of supercritical CO2 centrifugal compressor[J]. Energy Conversion and Management, 2021, 248:114810.
[74] TANG S S, PENG M J, XIA G L, et al. Optimization design for supercritical carbon dioxide compressor based on simulated annealing algorithm[J]. Annals of Nuclear Energy, 2020, 140:107107.
[75] DU Y D, YANG C, WANG H M, et al. One-dimensional optimisation design and off-design operation strategy of centrifugal compressor for supercritical carbon dioxide Brayton cycle[J]. Applied Thermal Engineering, 2021, 196:117318.
[76] MORAGA F, HOFER D, SAXENA S, et al. Numerical approach for real gas simulations:Part Ⅰ-tabular fluid properties for real gas analysis[C]//Proceedings of the ASME Turbo Expo 2017:Turbomachinery Technical Conference and Exposition. Charlotte, USA:ASME, 2017:V009T38A004.
[77] PECNIK R, RINALDI E, COLONNA P. Computational fluid dynamics of a radial compressor operating with supercritical CO2[J]. Journal of Engineering for Gas Turbines and Power, 2012, 134(12):122301.
[78] RINALDI E, PECNIK R, COLONNA P. Steady state CFD investigation of a radial compressor operating with supercritical CO2[C]//Proceedings of the ASME Turbo Expo 2013:Turbine Technical Conference and Exposition. San Antonio, USA:ASME, 2013:V008T34A008.
[79] RINALDI E, PECNIK R, COLONNA P. Numerical computation of the performance map of a supercritical CO2 radial compressor by means of three-dimensional CFD simulations[C]//Proceedings of the ASME Turbo Expo 2014:Turbine Technical Conference and Exposition. Düsseldorf, Germany:ASME, 2014:V03BT36A017.
[80] KIM S G, AHN Y, LEE J, et al. Numerical investigation of a centrifugal compressor for supercritical CO2 as a working fluid[C]//Proceedings of the ASME Turbo Expo 2014:Turbine Technical Conference and Exposition. Düsseldorf, Germany:ASME, 2014:V03BT36A005.
[81] KIM S G, LEE J, AHN Y, et al. CFD investigation of a centrifugal compressor derived from pump technology for supercritical carbon dioxide as a working fluid[J]. The Journal of Supercritical Fluids, 2014, 86:160-171.
[82] AMELI A, AFZALIFAR A, TURUNEN-SAARESTI T, et al. Effects of real gas model accuracy and operating conditions on supercritical CO2 compressor performance and flow field[J]. Journal of Engineering for Gas Turbines and Power, 2018, 140(6):062603.
[83] SHAO W Y, YANG J G, WANG X F, et al. Accuracy study and stability control of a property-table-based CFD strategy for modeling S-CO2 compressors working near the critical point of the fluid[J]. Applied Thermal Engineering, 2021, 183:116222.
[84] SHAO W Y, YANG J G, WANG X F, et al. A real gas-based throughflow method for the analysis of S-CO2 centrifugal compressors[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2020, 234(10):1943-1958.
[85] KARAEFE R E, POST P, SEMBRITZKY M, et al. Numerical investigation of a centrifugal compressor for supercritical CO2 cycles[C/OL].(2021-01-11)[2022-12-20]. DOI:10.1115/gt2020-15149.
[86] LEE J, CHO S K, LEE J I. The effect of real gas approximations on S-CO2 compressor design[J]. Journal of Turbomachinery, 2018, 140(5):051007.
[87] BALTADJIEV N, LETTIERI C, SPAKOVSZKY Z. An investigation of real gas effects in supercritical CO2 centrifugal compressors[C]//Proceedings of the ASME Turbo Expo 2014:Turbine Technical Conference and Exposition. Düsseldorf, Germany:ASME, 2014:V03BT36A011.
[88] LETTIERI C, BALTADJIEV N, CASEY M, et al. Low-flow-coefficient centrifugal compressor design for supercritical CO2[J]. Journal of Turbomachinery, 2014, 136(8):081008.
[89] 王婉月.超临界二氧化碳离心压气机流动特性研究[D].南京:南京航空航天大学, 2018. WANG W Y. Research on the flow characteristics of supercritical carbon dioxide centrifugal compressor[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2018.(in Chinese)
[90] CAI R K, YANG M Y, DENG K Y, et al. Influence of real gas properties on loss in a supercritical CO2(S-CO2) centrifugal compressor[C]//Proceedings of the ASME Turbo Expo 2022:Turbomachinery Technical Conference and Exposition. Rotterdam, Netherlands:ASME, 2022:V009T28A013.
[91] AMELI A, TURUNEN-SAARESTI T, BACKMAN J. Numerical investigation of the flow behavior inside a supercritical CO2 centrifugal compressor[J]. Journal of Engineering for Gas Turbines and Power, 2018, 140(12):122604.
[92] HACKS A J, SCHUSTER S, BRILLERT D. Stabilizing effects of supercritical CO2 fluid properties on compressor operation[J]. International Journal of Turbomachinery, Propulsion and Power, 2019, 4(3):20.
[93] ALOK F K H, NAJIM Y M. Three dimensional CFD of supercritical CO2 flow characterization in a centrifugal compressor[J]. International Research Journal of Innovations in Engineering and Technology, 2022, 6(3):13-23.
[94] LETTIERI C, YANG D, SPAKOVSZKY Z. An investigation of condensation effects in supercritical carbon dioxide compressors[C/OL].(2014-09-10)[2022-12-20]. http://sco2symposium.com/papers2014/turbomachinery/36-Lettieri.pdf.
[95] LETTIERI C, PAXSON D, SPAKOVSZKY Z, et al. Characterization of nonequilibrium condensation of supercritical carbon dioxide in a de Laval nozzle[J]. Journal of Engineering for Gas Turbines and Power, 2018, 140(4):041701.
[96] RINALDI E, PECNIK R, COLONNA P. Computational fluid dynamic simulation of a supercritical CO2 compressor performance map[J]. Journal of Engineering for Gas Turbines and Power, 2015, 137(7):072602.
[97] TONI L, BELLOBUONO E F, VALENTE R, et al. Experimental and numerical performance survey of a MW-scale supercritical CO2 compressor operating in near-critical conditions[C/OL].(2022-02-24)[2022-12-20]. https://sco2symposium.com/proceedings2022/177-paper.pdf.
[98] KIM S G, CHO S K, LEE J I, et al. RANS simulation of a radial compressor with supercritical CO2 fluid for external loss model development[C]//Proceedings of the ASME Turbo Expo 2018:Turbomachinery Technical Conference and Exposition. Oslo, Norway:ASME, 2018:V009T38A020.
[99] BRINCKMAN K W, HOSANGADI A, LIU Z S, et al. Numerical simulation of non-equilibrium condensation in supercritical CO2 compressors[C]//Proceedings of the ASME Turbo Expo 2019:Turbomachinery Technical Conference and Exposition. Phoenix, USA:ASME, 2019:V009T38A010.
[100] 王枭,陈启明,胡四兵,等.跨临界二氧化碳离心压缩机叶轮流场计算[J].流体机械, 2020, 48(10):17-21, 53. WANG X, CHEN Q M, HU S B, et al. Numerical study of the flow field of the transcritical carbon dioxide centrifugal compressor impeller[J]. Fluid Machinery, 2020, 48(10):17-21, 53.(in Chinese)
[101] BAO W R, YANG C, FU L, et al. Non-uniform two-phase flow of supercritical carbon dioxide centrifugal compressor[C/OL].(2021-01-11)[2022-12-20]. DOI:10.1115/gt2020-14285.
[102] PERSICO G, GAETANI P, ROMEI A, et al. Implications of phase change on the aerodynamics of centrifugal compressors for supercritical carbon dioxide applications[J]. Journal of Engineering for Gas Turbines and Power, 2021, 143(4):041007.
[103] HOSANGADI A, WEATHERS T, LIU J, et al. Numerical predictions of mean performance and dynamic behavior of a 10 MWe S-CO2 compressor with test data validation[J]. Journal of Engineering for Gas Turbines and Power, 2022, 144(12):121019.
[104] 刘智远.超临界CO2离心压缩机进口参数影响及泄漏流与失速关联性研究[D].北京:中国科学院大学(中国科学院工程热物理研究所), 2021. LIU Z Y. Investigation on the influence of supercritical CO2 centrifugal compressor inlet condition and correlation between leakage flow and stall[D]. Beijing:University of Chinese Academy of Sciences (Institute of Engineering Thermophysics, CAS), 2021.(in Chinese)
[105] PHAM H S, ALPY N, FERRASSE J H, et al. An approach for establishing the performance maps of the S-CO2 compressor:Development and qualification by means of CFD simulations[J]. International Journal of Heat and Fluid Flow, 2016, 61:379-394.
[106] LIESE E, ZITNEY S E. The impeller exit flow coefficient as a performance map variable for predicting centrifugal compressor off-design operation applied to a supercritical CO2 working fluid[C]//Proceedings of the ASME Turbo Expo 2017:Turbomachinery Technical Conference and Exposition. Charlotte, USA:ASME, 2017:V009T38A003.
[107] BAO W R, YANG C, WANG W L, et al. Effect of inlet temperature on flow behavior and performance characteristics of supercritical carbon dioxide compressor[J]. Nuclear Engineering and Design, 2021, 380:111296.
[108] SAXENA S, MALLINA R, MORAGA F, et al. Numerical approach for real gas simulations:Part Ⅱ-flow simulation for supercritical CO2 centrifugal compressor[C]//ASME Turbo Expo 2017:Turbomachinery Technical Conference and Exposition. Charlotte, USA:ASME, 2017:V009T38A005.
[109] HOSANGADI A, LIU Z S, WEATHERS T, et al. Numerical simulations of CO2 compressors:Subcritical inlet conditions[C/OL].(2018-03-29)[2022-12-20]. http://sco2symposium.com/papers2018/turbomachinery/007_Paper.pdf.
[110] HOSANGADI A, LIU Z S, WEATHERS T, et al. Modeling multiphase effects in CO2 compressors at subcritical inlet conditions[J]. Journal of Engineering for Gas Turbines and Power, 2019, 141(8):081005.
[111] HOSANGADI A, WEATHERS T, LIU Z, et al. Numerical simulations of CO2 compressors at near-critical and sub-critical inlet conditions[C]//Proceedings of the ASME Turbo Expo 2018:Turbomachinery Technical Conference and Exposition. Oslo, Norway:ASME, 2018:V009T38A002.
[112] LIU H Q, CHI Z R, ZANG S S. Influence of relative velocity ratio on centrifugal impellers operating with supercritical CO2[C]//Proceedings of the ASME Turbo Expo 2018:Turbomachinery Technical Conference and Exposition. Oslo, Norway:ASME, 2018:V009T38A011.
[113] KUMAR H, MISTRY C S. Numerical performance and flow field study of centrifugal compressor with supercritical carbon-dioxide (S-CO2)[C]//Proceedings of the ASME 2019 Gas Turbine India Conference. Chennai, India:ASME, 2019:V001T01A015.
[114] RAMAN S K, KIM H D. Computational analysis of the performance characteristics of a supercritical CO2 centrifugal compressor[J]. Computation, 2018, 6(4):54.
[115] 曹润,李志刚,邓清华,等.超临界二氧化碳离心压气机设计和气动性能研究[J].西安交通大学学报, 2020, 54(4):44-52. CAO R, LI Z G, DENG Q H, et al. Design and aerodynamic performance investigation of supercritical carbon dioxide centrifugal compressor[J]. Journal of Xi'an Jiaotong University, 2020, 54(4):44-52.(in Chinese)
[116] CAO R, LI Z G, DENG Q H, et al. Design and aerodynamic performance investigations of centrifugal compressor for 150 kW class supercritical carbon dioxide simple brayton cycle[C/OL].(2021-01-11)[2022-12-20]. DOI:10.1115/gt2020-16156.
[117] DU Q W, ZHANG D, XIE Y H. Investigation on steady aerodynamic performance of a S-CO2 compressor with different diffusers in solar power system[J]. IOP Conference Series:Materials Science and Engineering, 2019, 556:012027.
[118] SARAVI S S, TASSOU S A. Diffuser performance of centrifugal compressor in supercritical CO2 power systems[J]. Energy Procedia, 2019, 161:438-445.
[119] ROMEI A, GAETANI P, PERSICO G. Computational fluid-dynamic investigation of a centrifugal compressor with inlet guide vanes for supercritical carbon dioxide power systems[J]. Energy, 2022, 255:124469.
[120] GUO D, SHI D B, ZHANG D. Investigation on steady and unsteady performance of a S-CO2 centrifugal compressor with splitters[J]. Thermal Science, 2017, 21(S1):185-192.
[121] WANG Y Q, SHI D B, ZHANG D, et al. Investigation on unsteady flow characteristics of a S-CO2 centrifugal compressor[J]. Applied Sciences, 2017, 7(4):310.
[122] MA C, WANG W, WU J, et al. Analysis of unsteady flow in a supercritical carbon dioxide radial compressor stage[C]//Proceedings of the 201826th International Conference on Nuclear Engineering. London, UK:ASME, 2018:V06BT08A037.
[123] BAO W R, YANG C, ZHANG H Z, et al. Unsteady flow behavior and two-phase region prediction in the S-CO2 centrifugal compressor[J]. Annals of Nuclear Energy, 2022, 175:109200.
[124] JOSLIN R D, MILLER D N. Fundamentals and applications of modern flow control[M]. Reston:American Institute of Aeronautics and Astronautics, 2009.
[125] SHI D B, WANG Y Q, XIE Y H, et al. The influence of flow passage geometry on the performances of a supercritical CO2 centrifugal compressor[J]. Thermal Science, 2018, 22(S2):409-418.
[126] PEI J Z, ZHAO Y Y, ZHAO M R, et al. Effects of leading edge profiles on flow behavior and performance of supercritical CO2 centrifugal compressor[J]. International Journal of Mechanical Sciences, 2022, 229:107520.
[127] LI X J, ZHAO Y J, YAO H D, et al. A new method for impeller inlet design of supercritical CO2 centrifugal compressors in brayton cycles[J]. Energies, 2020, 13(19):5049.
[128] CHO S K, BAE S J, JEONG Y, et al. Direction for high-performance supercritical CO2 centrifugal compressor design for dry cooled supercritical CO2 Brayton cycle[J]. Applied Sciences, 2019, 9(19):4057.
[129] OH B S, JEONG Y, CHO S K, et al. Controllability of S-CO2 power system coupled small modular reactor with improved compressor design[J]. Applied Thermal Engineering, 2021, 192:116957.
[130] 蒋雪峰,田勇,邵卫卫,等.超临界二氧化碳压缩机特性数值模拟[J].航空动力学报, 2018, 33(7):1685-1694. JIANG X F, TIAN Y, SHAO W W, et al. Numerical simulation of supercritical CO2 compressors characteristics[J]. Journal of Aerospace Power, 2018, 33(7):1685-1694.(in Chinese)
[131] 王枭,饶杰,朱晓农,等.几何参数对跨临界二氧化碳离心压缩机叶轮冷凝现象的影响研究[J].风机技术, 2020, 62(6):18-22. WANG X, RAO J, ZHU X N, et al. The influence of geometrical parameters on the condensation phenomenon of the trans-critical carbon dioxide centrifugal compressor impeller[J]. Chinese Journal of Turbomachinery, 2020, 62(6):18-22.(in Chinese)
[132] 王军里.某超临界二氧化碳离心压气机气动设计与内部流场分析研究[D].哈尔滨:哈尔滨工业大学, 2020. WANG J L. Aerodynamic design and internal flow analysis for a supercritical carbon dioxide centrifugal compressor[D]. Harbin:Harbin Institute of Technology, 2020.(in Chinese)
[133] ZHAO H, DENG Q H, ZHANG H Z, et al. The influence of tip clearance on supercritical CO2 centrifugal compressor performance[C]//ASME Turbo Expo 2015:Turbine Technical Conference and Exposition. Montreal, Canada:ASME, 2015:V009T36A008.
[134] SHI D B, XIE Y H. Aerodynamic optimization design of a 150 kW high performance supercritical carbon dioxide centrifugal compressor without a high speed requirement[J]. Applied Sciences, 2020, 10(6):2093.
[135] YUAN H M, PIDAPARTI S, WOLF M, et al. Numerical modeling of supercritical carbon dioxide flow in see-through labyrinth seals[J]. Nuclear Engineering and Design, 2015, 293:436-446.
[136] KIM M S, BAE S J, SON S, et al. Study of critical flow for supercritical CO2 seal[J]. International Journal of Heat and Mass Transfer, 2019, 138:85-95.
[137] 曹润,李志刚,李军,等.具有密封结构的超临界二氧化碳离心压缩机特性研究[J].西安交通大学学报, 2022, 56(4):127-137. CAO R, LI Z G, LI J, et al. Study on characteristics of supercritical carbon dioxide centrifugal compressor with sealing structure[J]. Journal of Xi'an Jiaotong University, 2022, 56(4):127-137.(in Chinese)
[138] PELTON R, JUNG S, ALLISON T, et al. Design of a wide-range centrifugal compressor stage for supercritical CO2 power cycles[J]. Journal of Engineering for Gas Turbines and Power, 2018, 140(9):092602.
[139] 尚鹏旭.超临界二氧化碳离心压缩机自循环机匣扩稳机理研究[D].天津:天津理工大学, 2022. SHANG P X. Stability enhancement mechanism of self-circulating casing on the supercritical carbon dioxide centrifugal compressor[D]. Tianjin:Tianjin University of Technology, 2022.(in Chinese)
[140] CICH S D, MOORE J, MORTZHEIM J P, et al. Design of a supercritical CO2 compressor for use in a 10 MWe power cycle[C/OL].(2018-03-29)[2022-12-20]. http://sco2symposium.com/papers2018/turbomachinery/170_Paper.pdf.
[141] 陈俊君.超临界二氧化碳离心压缩机的性能优化研究[D].武汉:华中科技大学, 2019. CHEN J J. Study on performance optimization of supercritical carbon dioxide centrifugal compressor[D]. Wuhan:Huazhong University of Science and Technology, 2019.(in Chinese)
[142] SCHUSTER S, BENRA F K, BRILLERT D. Small scale S-CO2 compressor impeller design considering real fluid conditions[C/OL].(2016-03-31)[2022-12-20]. http://sco2symposium.com/papers2016/Turbomachinery/036paper.pdf.
[143] BUDINIS S, THORNHILL N F. Supercritical fluid recycle for surge control of CO2 centrifugal compressors[J]. Computers&Chemical Engineering, 2016, 91:329-342.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn