Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2023, Vol. 63 Issue (11): 1856-1867    DOI: 10.16511/j.cnki.qhdxxb.2023.26.035
  机械工程 本期目录 | 过刊浏览 | 高级检索 |
全模颤振四绳支撑系统运动特性与稳定性
江海龙, 王晓光, 王家骏, 柳汀, 林麒
厦门大学 航空航天学院, 厦门 361102
Kinematic characteristics and stability analysis of four-cable suspension system for full-model flutter wind tunnel test
JIANG Hailong, WANG Xiaoguang, WANG Jiajun, LIU Ting, LIN Qi
School of Aerospace Engineering, Xiamen University, Xiamen 361102, China
全文: PDF(10129 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 全模颤振风洞试验是飞行器气弹设计与验证的重要环节,其中的一个关键问题是设计满足固有频率和运动调整范围要求的模型支撑。该文以跨声速风洞试验为应用背景,基于绳系并联机构原理,提出一种四绳-三弹簧牵引的全模颤振支撑方式。根据运动学关系,建立该四绳-三弹簧系统的刚度表达式;基于虚功原理,推导了系统应满足稳定性的条件。通过刚度和气动导数矩阵分析,以及气动力作用下的模型位姿响应,证明了该支撑适用于静不稳定飞机模型。经过系统冲击响应及其频率影响因素研究表明:该支撑能满足全模颤振对支撑系统固有频率的要求;通过仿真计算和Adams软件模拟,验证了该支撑能通过控制绳长和操纵舵面调控,实现对飞机模型位姿的有效调整。研究结果可以为全模颤振试验模型支撑技术提供一种新的思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
江海龙
王晓光
王家骏
柳汀
林麒
关键词 全模颤振模型支撑绳系并联机构刚度固有频率稳定性    
Abstract:[Objective] Full-model flutter test is crucial for the aeroelastic design and verification of aircraft. One of the key challenges of the test is ensuring that the model's suspension design meets the natural frequency and motion adjustment range requirements. This study proposes a cable suspension system with four cables/three springs for the full-model flutter wind tunnel test under transonic conditions to address the current research gap in verifying suspension systems other than the existing two-cable or three-cable suspension mechanisms. The designed four-cable suspension method is expected to offer distinct advantages for transonic wind tunnel tests, such as suitability for the static unstable aircraft models and their intelligent controls. [Method] The stability and kinematic characteristics of the proposed four-cable suspension system are analyzed and validated through a series of methods. First, the stiffness expression of the mechanism is established based on the differential kinematics and used for deriving the stability criterion in light of the principle of virtual work by considering the system dynamic equations and the aerodynamic model of the aircraft. Subsequently, the eigenvalues of the stiffness and aerodynamic derivatives matrix are determined, and the pose variations of the aircraft model subjected to aerodynamic forces are numerically investigated to demonstrate the suitability of the suspension system for static unstable aircraft models. Additionally, the system impact response and the factors influencing its frequency are studied, proving that the four-cable suspension system meets the natural frequency requirements of the full-model flutter wind tunnel test. Numerical calculations and Adams software simulations are performed to verify that the four-cable suspension system can achieve effective adjustment of the aircraft model pose by controlling the cable length and manipulating the aileron and rudder surfaces. Finally, a simple prototype is built for modal frequency experiments to verify the feasibility of the proposed theoretical method. [Results] The simulation and numerical calculation results demonstrated that the proposed four-cable suspension method was a viable solution for the full-model flutter wind tunnel test under transonic conditions, providing five degrees of freedom to the model. The high-speed incoming flow dynamic response results revealed that the four-cable suspension system exhibited outstanding stability, with the largest magnitude observed in the centroid displacement along the sideslip direction of the aircraft model, which was less than 0.04 m, while the rotational angle amplitudes did not exceed 15.0°. The initial pre-tension force could be adjusted to ensure that the cable continuously remained in tension. Furthermore, the natural frequencies of the mechanism in the three rotation directions were approximately 0.8~1.0 Hz, and the natural frequencies in the sideslip and heave directions were within 3.0 Hz. The study also examined the influence of different traction positions and spring numbers on the natural frequency and revealed that the attitude angle adjustment range of the four-cable suspension system with three springs could meet the requirements of the test through cable length adjustment and rudder surface control. The simple prototype frequency experiment demonstrated that the roll, pitch, and yaw direction modal frequencies were less than 3.0 Hz. [Conclusion] This study demonstrates the feasibility of using the proposed four-cable suspension system for transonic full-model flutter wind tunnel testing through numerical calculations, software simulations, and prototype experiments, providing a approach for the model suspension technology in transonic full-model flutter test.
Key wordsfull-model flutter    model suspension    cable-driven parallel mechanism    stiffness    natural frequency    stability
收稿日期: 2023-02-07      出版日期: 2023-10-16
基金资助:国家自然科学基金资助项目(12172315,12072304,11702232);翼型、叶栅空气动力学重点实验室基金项目(61422010103);福建省自然科学基金计划资助项目(2021J01050)
通讯作者: 王晓光,副教授,E-mail:xgwang@xmu.edu.cn     E-mail: xgwang@xmu.edu.cn
引用本文:   
江海龙, 王晓光, 王家骏, 柳汀, 林麒. 全模颤振四绳支撑系统运动特性与稳定性[J]. 清华大学学报(自然科学版), 2023, 63(11): 1856-1867.
JIANG Hailong, WANG Xiaoguang, WANG Jiajun, LIU Ting, LIN Qi. Kinematic characteristics and stability analysis of four-cable suspension system for full-model flutter wind tunnel test. Journal of Tsinghua University(Science and Technology), 2023, 63(11): 1856-1867.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2023.26.035  或          http://jst.tsinghuajournals.com/CN/Y2023/V63/I11/1856
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] 杨超,吴志刚,万志强,等.飞行器气动弹性原理[M].北京:北京航空航天大学出版社, 2011. YANG C, WU Z G, WAN Z Q, et al. Aeroelastic principle of aircraft[M]. Beijing:Beihang University Press, 2011.(in Chinese)
[2] 陆志良,郭同庆,管德.跨音速颤振计算方法研究[J].航空学报, 2004, 25(3):214-217. LU Z L, GUO T Q, GUAN D. A study of calculation method for transonic flutter[J]. Acta Aeronautica et Astronautica Sinica, 2004, 25(3):214-217.(in Chinese)
[3] 吴志刚,杨超.机翼的气动伺服弹性设计优化研究[J].航空学报, 2006, 27(4):570-573. WU Z G, YANG C. Aeroservoelastic design optimization of flexible wings[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(4):570-573.(in Chinese)
[4] 崔鹏,韩景龙.基于CFD/CSD的非线性气动弹性分析方法[J].航空学报, 2010, 31(3):480-486. CUI P, HAN J L. Investigation of nonlinear aeroelastic analysis using CFD/CSD[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(3):480-486.(in Chinese)
[5] 杨国伟,钱卫.飞行器跨声速气动弹性数值分析[J].力学学报, 2005, 37(6):769-776. YANG G W, QIAN W. Numerical analyses of transonic flutter on an aircraft[J]. Chinese Journal of Theoretical and Applied Mechanics, 2005, 37(6):769-776.(in Chinese)
[6] 路波,吕彬彬,罗建国,等.跨声速风洞全模颤振试验技术[J].航空学报, 2015, 36(4):1086-1092. LU B, LV B B, LUO J G, et al. Wind tunnel technique for transonic full-model flutter test[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(4):1086-1092.(in Chinese)
[7] RIVERA J A, FLORANCE J R. Contributions of transonic dynamics tunnel testing to airplane flutter clearance[C]//41st Structures, Structural Dynamics, and Materials Conference and Exhibit. Atlanta, USA:AIAA, 2000:AIAA-2000-1768.
[8] LIVNE E, WEISSHAAR T A. Aeroelasticity of nonconventional airplane configurations-past and future[J]. Journal of Aircraft, 2003, 40(6):1047-1065.
[9] COLE S R, NOLL T E, PERRY B. Transonic dynamics tunnel aeroelastic testing in support of aircraft development[J]. Journal of Aircraft, 2003, 40(5):820-831.
[10] REED W H, ABBOTT F T. A new "free-flight" mount system for high-speed wind-tunnel flutter models[R/OL].[2023-02-01]. https://www.zhangqiaokeyan.com/ntis-science-report_other_thesis/020711162592.html.
[11] GLAZKOV S A, GORBUSHIN A R, KHOZIAENKO N N, et al. Investigation of the rear support interference on the aerodynamic characteristics of the RRJ-95 model in the T-128 transonic wind tunnel[C]//International Congress on Instrumentation in Aerospace Simulation Facilities. Sendai, Japan:IEEE, 2005:76-82.
[12] 唐建平,杨远志,梁鉴.低速全模颤振试验悬挂支撑系统[J].实验流体力学, 2014, 28(4):65-69. TANG J P, YANG Y Z, LIANG J. Floating suspension system for full model flutter tests at low speed[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(4):65-69.(in Chinese)
[13] 郭洪涛,路波,余立,等.某战斗机高速全模颤振风洞试验研究[J].航空学报, 2012, 33(10):1765-1771. GUO H T, LU B, YU L, et al. Investigation on full-model flutter of a certain fighter plane in high-speed wind tunnel test[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(10):1765-1771.(in Chinese)
[14] 钱卫,杨国伟,张桂江,等.某全机跨声速颤振模型颤振特性仿真与试验验证[J].空气动力学学报, 2014, 32(3):364-368. QIAN W, YANG G W, ZHANG G J, et al. Flutter characteristic simulation and experimental verification for transonic flutter model of a whole aircraft[J]. Acta Aerodynamica Sinica, 2014, 32(3):364-368.(in Chinese)
[15] 赵冬强,胡志勇,高宏.全机颤振风洞试验模型地面共振试验影响因素分析[J].航空科学技术, 2015, 26(7):61-65. ZHAO D Q, HU Z Y, GAO H. Affecting factors analysis of GVT for aircraft flutter wind tunnel model[J]. Aeronautical Science&Technology, 2015, 26(7):61-65.(in Chinese)
[16] 于金革,由亮,王昊,等.一种大型低速风洞颤振试验全模支撑装置:112014060A[P]. 2020-12-01. YU J G, YOU L, WANG H, et al. A full-model support device for flutter test in large low-speed wind tunnel:112014060A[P]. 2020-12-01.(in Chinese)
[17] 赵振军,闫昱,曾开春,等.全模颤振风洞试验三索悬挂系统多体动力学分析[J].航空学报, 2020, 41(11):123934. ZHAO Z J, YAN Y, ZENG K C, et al. Multibody dynamics analysis of three-cable mount system for full-mode flutter wind tunnel test[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(11):123934.(in Chinese)
[18] 吴太欢,林麒,何升杰,等.全模颤振双索悬挂系统刚体模态频率研究[J].航空学报, 2020, 41(9):123761. WU T H, LIN Q, HE S J, et al. Rigid body modal frequencies of two cables suspension system for full-model flutter[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(9):123761.(in Chinese)
[19] 李剑锋,王新华,魏源迁,等. 3-RSR并联机构的微分运动学及动力学分析[J].北京工业大学学报, 2003, 29(4):418-423. LI J F, WANG X H, WEI Y Q, et al. Differential kinematic and dynamic analysis of 3-RSR parallel mechanism[J]. Journal of Beijing University of Technology, 2003, 29(4):418-423.(in Chinese)
[20] SURDILOVIC D, RADOJICIC J. Practical stability of under-constrained cable-suspended parallel robots[M]//POTT A, BRUCKMANN T. Cable-driven parallel robots. Cham:Springer, 2019:85-98.
[21] 王延灵,卜忱,冯帅,等.大迎角横向状态空间气动力建模研究[J].飞行力学, 2021, 39(4):13-18. WANG Y L, BU C, FENG S, et al. Modeling of lateral state-space of aerodynamic characteristics at high angle of attack[J]. Flight Dynamics, 2021, 39(4):13-18.(in Chinese)
[22] HANDOJO V A, SYAMLAN A T, Nurahmi L, et al. Cable driven parallel robot with big interference-free workspace[M]//SEN D, MOHAN S, ANANTHASURESH G K. Mechanism and machine science. Singapore:Springer, 2021:43-56.
[1] 邱豪楠, 刘威, 唐悦, 王胡军, 郑靖. 仿生超滑涂层研究进展[J]. 清华大学学报(自然科学版), 2024, 64(3): 393-408.
[2] 李建, 王生海, 刘将, 高钰富, 韩广冬, 孙玉清. 绳驱动船舱清洗机器人动力学建模及鲁棒控制[J]. 清华大学学报(自然科学版), 2024, 64(3): 562-577.
[3] 金明, 陆羽笛, 李原森, 柳伟杰, 葛冰, 臧述升. 中心分级燃烧器流-热-声动态特性实验研究[J]. 清华大学学报(自然科学版), 2024, 64(1): 99-108.
[4] 苏阳, 李晓伟, 吴莘馨, 张作义. 核反应堆蒸汽发生器两相流不稳定性现象规律、研究方法及应用[J]. 清华大学学报(自然科学版), 2023, 63(8): 1184-1203.
[5] 胡钰文, 闫晓, 宫厚军, 王艳林, 周磊. 耦合传热并联矩形通道流动不稳定性数值研究[J]. 清华大学学报(自然科学版), 2023, 63(8): 1257-1263.
[6] 扈学超, 毕笑天, 刘策, 邵卫卫. 氢燃料微预混火焰燃烧不稳定性实验研究[J]. 清华大学学报(自然科学版), 2023, 63(4): 572-584.
[7] 赵彤, 蔡晨同, 王永飞, 卞鹏锡, 张毅博. 球头铣刀铣削薄板件颤振预测[J]. 清华大学学报(自然科学版), 2022, 62(9): 1474-1483.
[8] 刘鹏, 乔心州. 大跨度完全约束空间3-DOF柔索驱动并联机器人稳定性灵敏度研究[J]. 清华大学学报(自然科学版), 2022, 62(9): 1548-1558.
[9] 张卫锋, 李东杰, 张可, 周明. 基于弯曲刚度的阶梯转子等效梁单元方法[J]. 清华大学学报(自然科学版), 2022, 62(12): 2021-2028.
[10] 刘威, 谢小荣, 姜齐荣, 毛航银. 变流式新能源机组的次/超同步振荡、小扰动同步稳定性与阻抗模型分析[J]. 清华大学学报(自然科学版), 2022, 62(10): 1706-1714.
[11] 黄伟灿, 蒋晓华, 薛芃, 李欣阳, 沈稚栋, 孙宇光. 超导直流能源管道载流导体设计[J]. 清华大学学报(自然科学版), 2022, 62(10): 1715-1720.
[12] 陈亮, 秦兆博, 孔伟伟, 陈鑫. 基于最优前轮侧偏力的智能汽车LQR横向控制[J]. 清华大学学报(自然科学版), 2021, 61(9): 906-912.
[13] 关立文, 陈志雄, 刘春, 薛俊. 钻铆机器人静刚度建模及优化[J]. 清华大学学报(自然科学版), 2021, 61(9): 965-971.
[14] 马千里, 魏韡, 毛航银, 梅生伟. 分布式电源接入的微电网小干扰鲁棒稳定判据与参数安全域自适应覆盖算法[J]. 清华大学学报(自然科学版), 2021, 61(5): 385-394.
[15] 杨鹏, 刘锋, 姜齐荣, 毛航银. “双高”电力系统大扰动稳定性:问题、挑战与展望[J]. 清华大学学报(自然科学版), 2021, 61(5): 403-414.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn