Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2023, Vol. 63 Issue (3): 376-385    DOI: 10.16511/j.cnki.qhdxxb.2022.26.051
  论文 本期目录 | 过刊浏览 | 高级检索 |
载人飞船主伞包出舱动力学
王永滨1,2,3, 张亚婧2,3, 黄雪姣2,3, 殷莎4, 陈点豪4, 王奇2,3, 雷江利2,3, 贾贺1,2,3, 陈金宝1,3
1. 南京航空航天大学 航天学院, 南京 210016;
2. 北京空间机电研究所, 北京 100094;
3. 中国航天科技集团有限公司 航天进入减速与着陆技术实验室, 北京 100094;
4. 北京航空航天大学 交通科学与工程学院, 北京 100191
Dynamics of the manned spacecraft's main parachute outlet
WANG Yongbin1,2,3, ZHANG Yajing2,3, HUANG Xuejiao2,3, YIN Sha4, CHEN Dianhao4, WANG Qi2,3, LEI Jiangli2,3, JIA He1,2,3, CHEN Jinbao1,3
1. College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
2. Beijing Institute of Space Mechanics & Electricity, Beijing 100094, China;
3. Laboratory of Aerospace Entry, Descent and Landing Technology, China Aerospace Science and Technology Corporation, Beijing 100094, China;
4. School of Transportation Science and Engineering, Beihang University, Beijing 100191, China
全文: PDF(8661 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 中国新一代载人飞船试验船的气动减速系统由2具减速伞和3具主伞组成,减速伞在实现第1阶段减速后分离并将主伞包从飞船中拉出。主伞包出舱作为降落伞系统的一个重要工作环节,一直是回收着陆系统的关键技术和设计难点之一,由于这一瞬时高动态过程涉及吊带、伞包和舱盖等多体接触和受力耦合作用,因此采用基于简化动力学模型的理论计算方法难以准确描述该过程。该文提出了一种基于有限元模型的气动-动力学耦合分析方法,建立了主伞包出舱动力学模型,运用气动力载荷动态匹配控制方法实现了降落伞由气动载荷向动力学模型的精确传递,通过对初始速度、防热层拉力和舱盖质量等影响主伞包出舱的因素进行全面分析对比,获得了主伞包出舱过程的载荷、速度和过载等动力学特性,直观且逼真地描述了主伞包出舱的动态过程。该方法有效指导了新一代载人飞船试验船回收系统方案的设计,为后续的正式飞行任务提供了理论支持。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王永滨
张亚婧
黄雪姣
殷莎
陈点豪
王奇
雷江利
贾贺
陈金宝
关键词 新飞船返回舱主伞包出舱过载冲击    
Abstract:[Objective] China's new-generation manned spacecraft test ship uses two deceleration parachutes and three main parachutes for pneumatic deceleration recovery. The main parachute bag is separated and pulled out after the deceleration parachute has completed its work. The main parachute bag is then pulled out from the parachute cabin as a key and important link in parachute deceleration in the design of the recovery landing system. The pullout process of the main parachute bag involves multibody coupling, such as slings, parachute bags, and hatch covers. Thus, the process is relatively complicated and theoretical calculations are generally used. Accurately describing the process, which could lead to countless errors in the actual process, is difficult.[Methods] This paper propose a finite element analysis method to establish a dynamic analysis model for the main parachute out of the cabin to solve the aforementioned problem and accurately understand the changes produced in this process. In addition, the actual parachute and rope system calculation model is established to quantify the relative motion and load of each component accurately in the pullout process of the main parachute, and the load distribution of different connecting parts is obtained, providing support for the system design and evaluation. The parachute aerodynamic deceleration model is simplified on the basis of the aerodynamic load dynamic matching control method, which affects the initial speed of the main parachute out of the cabin. Influencing factors, such as the tensile force of the heat shield and the quality of the hatch cover, are comprehensively analyzed and compared. The response characteristics of the load, speed, and overload of the main parachute bag out of the cabin are obtained, and the entire process of the main parachute bag out of the cabin is intuitively described.[Results] The method for the main parachute out of the cabin demonstrated the following results:1) The main parachute pullout process based on finite element analysis technology could accurately describe the coupling relationship between parachute components and simplify the aerodynamic calculation of parachutes. The dynamic iterative aerodynamic load subroutine could reduce the calculation amount and provide an efficient analysis means for the dynamic analysis of the reentry capsule. 2) With the increase in the initial speed in the pullout process of the main parachute, the time required for the complete pullout of the main parachute was short, the load on each sling increased, and the overload of the entire cabin also showd a rising trend. Therefore, the initial drawing boundary conditions should be strictly controlled. 3) The mass of the main umbrella covered considerably affected the peak force of the total towing load curve of the umbrella and would increase with the mass. Thus, the weight of the main umbrella cover should be strictly controlled in the scheme design to reduce the load of the umbrella towing.[Conclusions] This method effectively guides the design of the recovery system for a new generation of manned spacecraft test ships and provides theoretical support for subsequent formal flight missions.
Key wordsnew spacecraft    return cabin    main parachute bag    exit cabin    overload    impact
收稿日期: 2021-12-29      出版日期: 2023-03-04
基金资助:国家重大科技专项;国家自然科学基金资助项目(51505028)
通讯作者: 陈金宝,教授,E-mail:chenjbao@nuaa.edu.cn      E-mail: chenjbao@nuaa.edu.cn
作者简介: 王永滨(1984-),男,研究员。
引用本文:   
王永滨, 张亚婧, 黄雪姣, 殷莎, 陈点豪, 王奇, 雷江利, 贾贺, 陈金宝. 载人飞船主伞包出舱动力学[J]. 清华大学学报(自然科学版), 2023, 63(3): 376-385.
WANG Yongbin, ZHANG Yajing, HUANG Xuejiao, YIN Sha, CHEN Dianhao, WANG Qi, LEI Jiangli, JIA He, CHEN Jinbao. Dynamics of the manned spacecraft's main parachute outlet. Journal of Tsinghua University(Science and Technology), 2023, 63(3): 376-385.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2022.26.051  或          http://jst.tsinghuajournals.com/CN/Y2023/V63/I3/376
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] 陈怡, 闫大庆. 国外新一代载人飞船研制概况[J]. 中国航天, 2015(10):18-23. CHEN Y, YAN D Q. Overview of new generation of manned spacecraft[J]. Aerospace China, 2015(10):18-23. (in Chinese)
[2] 庞之浩. 美国研制中的几种载人天地往返系统[J]. 国际航空, 2014(7):70-71. PANG Z H. U.S. manned spacecraft developing in progress[J]. International Aviation, 2014(7):70-71. (in Chinese)
[3] 雷江利, 荣伟, 贾贺, 等. 国外新一代载人飞船减速着陆技术研究[J]. 航天器工程, 2017, 26(1):100-109. LEI J L, RONG W, JIA H, et al. Research on descent and landing technology for new generation manned spacecraft[J]. Spacecraft Engineering, 2017, 26(1):100-109. (in Chinese)
[4] ROMERO L M. CPAS parachute testing, model development, & verification[C]//International PlanetaryProbe Workshop 10. San Jose, USA:International Planetary, 2013:20130014013.
[5] VARELA J G, RAY E S. Skipped stage modeling and testing of the CPAS main parachutes[C]//22nd AIAA Aerodynamic Decelerator Systems Technology Conference. Daytona Beach, USA:AAIA, 2013:20130011109.
[6] MCKINNEY J, FERGUSON P, WEBER M L, et al. Initial testing of the CST-100 aerodynamic deceleration system[C]//Proceedings of AIAA Aerodynamic Decelerator Systems (ADS) Conference. Daytona Beach, USA:AIAA, 2013:1263.
[7] MCCANN J R, DEPAUW T C, MCKINNEY J, et a1. Boeing CST-100 landing and recovery system design and development an integrated approach to landing[C]//Proceedings of AIAA Space 2013 Conference and Exposition. San Diego, USA:AIAA, 2013:5306.
[8] MCKINNEY J, FERGUSON P, WEBER M L, et al. Boeing CST-100 landing and recovery system design and development testing[C]//Proceedings of AIAA Aerodynamic Decelerator Systems (ADS) Conference. Daytona Beach, USA:AIAA, 2013:1261.
[9] 陈杰. 美国"龙"飞船国际空间站对接试验简析[J]. 中国航天, 2012(8):24-29. CHEN J. The docking test analysis of dragon and the international space station[J]. Aerospace China, 2012(8):24-29. (in Chinese)
[10] 张蕊. 国外新型可重复使用飞船特点分析和未来发展[J]. 国际太空, 2010(12):31-38. ZHANG R. Foreign new reusable spacecraft characteristics analysis and future development[J]. Space International, 2010(12):31-38. (in Chinese)
[11] 杨雷, 张柏楠, 郭斌, 等. 新一代多用途载人飞船概念研究[J]. 航空学报, 2015, 36(3):703-713. YANG L, ZHANG B N, GUO B, et al. Concept definition of new-generation multi-purpose manned spacecraft[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(3):703-713. (in Chinese)
[12] 包进进, 雷江利, 贾贺. 伞包拉出过程仿真及载荷影响分析[J]. 航天返回与遥感, 2017, 38(3):31-42. BAO J J, LEI J L, JIA H. Simulation of pulling main parachute pack and influencing factors analysis on loads[J]. Spacecraft Recovery & Remote Sensing, 2017, 38(3):31-42. (in Chinese)
[13] 林斌. 降落伞伞包载荷分析计算[J]. 航天返回与遥感, 2005, 26(1):14-17. LIN B. Load analysis for parachut bag[J]. Spacecraft Recovery & Remote Sensing, 2005, 26(1):14-17. (in Chinese)
[14] 鲁媛媛, 荣伟, 吴世通. 火星环境下降落伞拉直过程的动力学建模[J]. 航天返回与遥感, 2014, 35(1):29-36. LU Y Y, RONG W, WU S T. Dynamic modeling of parachute deployment in mars environment[J]. Spacecraft Recovery & Remote Sensing, 2014, 35(1):29-36. (in Chinese)
[15] 宋旭民, 程文科, 彭勇, 等. 飞船回收过程动力学建模与仿真[J]. 弹道学报, 2005, 17(2):55-59. SONG X M, CHENG W K, PENG Y, et al. Dynamic modelization and simulation of spaceship recovery scenario[J]. Journal of Ballistics, 2005, 17(2):55-59. (in Chinese)
[16] 夏刚, 郭鹏, 秦子增. 探月返回器伞舱盖拉伞包动力学模型[J]. 航天返回与遥感, 2013, 34(4):25-33. XIA G, GUO P, QIN Z Z. Dynamic model of parachute pack pulling process by parachute container cover[J]. Spacecraft Recovery & Remote Sensing, 2013, 34(4):25-33. (in Chinese)
[17] 张青斌, 程文科, 彭勇, 等. 降落伞拉直过程的多刚体模型[J]. 中国空间科学技术, 2003, 23(2):45-50. ZHANG Q B, CHENG W K, PENG Y, et al. A multi-rigid-body model of parachute deployment[J]. Chinese Space Science and Technology, 2003, 23(2):45-50. (in Chinese)
[18] 宋旭民, 秦子增, 程文科, 等. 具有倒"Y"型吊挂的降落伞系统动力学建模[J]. 国防科技大学学报, 2005, 27(5):103-106. SONG X M, QIN Z Z, CHENG W K, et al. The dynamic model of a parachute system with the inverted ‘Y’ suspension[J]. Journal of National University of Defense Technology, 2005, 27(5):103-106. (in Chinese)
[19] 黄伟. 降落伞附加质量的计算方法[J]. 航天返回与遥感, 2016, 37(2):42-50. HUANG W. Calculation methods of added mass of parachute[J]. Spacecraft Recovery & Remote Sensing, 2016, 37(2):42-50. (in Chinese)
[20] 熊菁, 秦小波, 程文科. 降落伞系统附加质量的研究[J]. 中国空间科学技术, 2002, 22(4):32-38, 56. XIONG J, QIN X B, CHENG W K. The added mass research in parachute system[J]. Chinese Space Science and Technology, 2002, 22(4):32-38, 56. (in Chinese)
[21] FRAIRE U, DEARMAN J, MORRIS A. Proposed framework for determining added mass of orion drogue parachutes[C]//21st AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Dublin, Ireland:AAIA, 2011:20110011303.
[1] 芦翔, 贾玉良, 吉雍彬, 葛冰, 臧述升. 不同冷却边界下燃烧室受迫振荡特性[J]. 清华大学学报(自然科学版), 2023, 63(4): 691-696.
[2] 李东兴, 侯森浩, 孙海宁, 黎帆, 唐晓强. 航天降落伞撕裂带测试装置及其动态索力响应特性[J]. 清华大学学报(自然科学版), 2023, 63(3): 294-301.
[3] 王天驰, 谢霖燊, 李俊娜, 杨友恒, 黄涛, 陈志强, 郭帆, 杜应超, 陈伟. 兆伏级串级自触发开关脉冲击穿特性影响机制及优化[J]. 清华大学学报(自然科学版), 2023, 63(1): 114-124.
[4] 田宏伟, 鲁立, 赵重阳, 石祥文, 李克俭. 多层多道CrMoV钢埋弧焊焊缝金属冲击韧性波动[J]. 清华大学学报(自然科学版), 2021, 61(11): 1273-1280.
[5] 隋立起, 田丰, 李波, 曾远帆, 田光宇, 陈红旭. 考虑齿轮耦合振动的换挡过程非线性动力学分析[J]. 清华大学学报(自然科学版), 2020, 60(2): 109-116.
[6] 吕振华, 孙靖譞. 轴向变密度铝泡沫件的动态和静态压缩实验与有限元模拟分析[J]. 清华大学学报(自然科学版), 2017, 57(7): 753-762.
[7] 张先文, 张丽岩, 丁力超, 魏荣荣, 王婕, 唐劲天. 基于心冲击信号的心率检测[J]. 清华大学学报(自然科学版), 2017, 57(7): 763-767.
[8] 孙靖譞, 吕振华. 车辆受垂向强冲击时座椅安全带的防护效果比较分析与锚点位置优化[J]. 清华大学学报(自然科学版), 2016, 56(12): 1302-1311.
[9] 刘赛, 吕振华. 扁长杆的冲击弹塑性屈曲特性分析的仿真有限元模型[J]. 清华大学学报(自然科学版), 2016, 56(10): 1104-1108.
[10] 关立文, 刘慧, 付萌. 动态飞行模拟器实时运动规划算法[J]. 清华大学学报(自然科学版), 2015, 55(7): 709-715.
[11] 曹欣荣, 刘蕾, 蔡东阳, 郭鹏, 唐劲天. 心冲击图特征统计及其医学诊断应用[J]. 清华大学学报(自然科学版), 2014, 54(5): 633-637.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn