Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2023, Vol. 63 Issue (6): 941-950    DOI: 10.16511/j.cnki.qhdxxb.2023.22.010
  公共安全 本期目录 | 过刊浏览 | 高级检索 |
杜雨霁1, 付明2, 端木维可2, 侯龙飞2, 李静1
1. 安徽建筑大学 数理学院, 合肥 230009;
2. 清华大学 合肥公共安全研究院, 合肥 230601
Risk assessment method of gas pipeline networks based on fuzzy analytic hierarchy process and improved coefficient of variation
DU Yuji1, FU Ming2, DUANMU Weike2, HOU Longfei2, LI Jing1
1. Department of Mathematics and Physics, Anhui Jianzhu University, Hefei 230009, China;
2. Hefei Institute for Public Security, Tsinghua University, Hefei 230601, China
全文: PDF(3287 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 可靠的风险评估结果有助于提升燃气管网安全管理水平。该文提出一种基于模糊层次分析和改进变异系数(FAHP-ICV)的燃气管网量化风险评估方法。结合某省燃气管网实际情况构建了包含3个一级指标、9个二级指标的燃气管网风险评估指标体系。采用FAHP与ICV相结合的组合赋权法确定指标的综合权重,基于统计学中K-means聚类、抽样技术及概率分析方法对指标评分分值进行调整,结合专家经验确定评分标准。采用线性综合评估方法计算管段相对风险值,实现风险排序及风险分级。以某省12个城市燃气数据为基础验证了该方法的可行性与适用性。该方法提升了燃气管网量化风险评估的客观性与准确性。
E-mail Alert
关键词 燃气管网风险评估模糊层次分析(FAHP)改进变异系数(ICV)K-means聚类    
Abstract:[Objective] Reliable risk assessment results can help to improve the efficiency of safety management in gas pipeline networks. The Kent method is widely used as an accepted risk assessment method. However, relevant literature suggests that the Kent method is inadequate in the determination of weights, scoring items, and scores, and the determination of index weights and scoring criteria requires expert experience, which is highly subjective. Therefore, the traditional Kent method needs to be improved to comply with the risk assessment of different gas pipeline networks. To improve the objectivity and accuracy of risk assessment of gas pipeline networks, a quantitative risk assessment method based on the fuzzy analytic hierarchy process-improved coefficient of variation (FAHP-ICV) for gas pipeline networks is proposed.[Methods] In this work, based on data from the gas pipeline networks and their surroundings, the traditional risk assessment method for gas pipeline networks was improved in terms of index system and weighting and scoring criteria determination using statistical methods. First, a risk assessment index system comprising three primary indicators and nine secondary indicators was constructed while considering the actual operation of the gas pipeline networks in a province. Second, the subjective weighting method represented by the hierarchical analysis method and the objective weighting method represented by the coefficient of variation method were improved. The fuzzy hierarchical analysis method was used instead of the traditional one, and the improved coefficient of variation method was used to modify the weighting results of the original coefficient of variation method. The two methods were combined to determine the comprehensive weights of the evaluation indicators based on expert experience and the inherent rules between the indicator data. Next, based on the K-means clustering and sampling techniques in statistics, the sample data for the pipe section were determined and pre-processed through probability analysis to determine the upper bound of the scores of evaluation indicators. Then, the final scoring criteria were determined by integrating expert reports. Finally, a linear integrated assessment method was used to calculate the relative risk values of the pipe sections to achieve risk ranking and classification.[Results] To analyze the distribution of risk classes across gas pipe sections in the cities, the relative risk values of gas pipe sections in 12 cities were calculated and compared with the risk class classification criteria. For example, in city four, a comparison between the distribution of risk classes across gas pipe sections and the local map showed that the overall risk of the city was relatively high. The average risk values for gas pipe sections and different level indicators were compared between 12 cities; four cities were found to have great risk, and one city was found to have significant risk. Furthermore, cross-analysis was carried out on the city where the inspection and maintenance indicators suggested not fulfilling the requirements of gas pipe inspection regulations.[Conclusions] The feasibility and applicability of the method were verified through examples, providing new ideas and methods for the quantitative risk assessment of gas pipeline networks.
Key wordsgas pipe network    risk assessment    fuzzy analytic hierarchy process (FAHP)    improved coefficient of variation (ICV)    [WTBX]K[WTBZ]-means clustering
收稿日期: 2022-12-11      出版日期: 2023-05-12
通讯作者: 付明,研究员,     E-mail:
作者简介: 杜雨霁(2000-),女,硕士研究生。
杜雨霁, 付明, 端木维可, 侯龙飞, 李静. 基于FAHP-ICV的燃气管网风险评估方法[J]. 清华大学学报(自然科学版), 2023, 63(6): 941-950.
DU Yuji, FU Ming, DUANMU Weike, HOU Longfei, LI Jing. Risk assessment method of gas pipeline networks based on fuzzy analytic hierarchy process and improved coefficient of variation. Journal of Tsinghua University(Science and Technology), 2023, 63(6): 941-950.
链接本文:  或
[1] 孟伟,何卫,李璐伶,等.城镇燃气行业发展现状与关键前沿技术[J].油气储运, 2022, 41(6):673-681. MENG W, HE W, LI L L, et al. Current status and key advanced technologies of urban gas industry development[J]. Oil&Gas Storage and Transportation, 2022, 41(6):673-681.(in Chinese)
[2] 中华人民共和囯住房和城乡建设部.中国城乡建设统计年鉴:2021[M].北京:中国统计出版社, 2022. Ministry of Housing and Urban-Rural Development of the People's Republic of China. China urban construction statistical yearbook:2021[M]. Beijing:China Statistics Press, 2022.(in Chinese)
[3] 黄忠宏,帅健,徐后佳,等.城镇燃气管道完整性管理效能评价方法[J].中国安全生产科学技术, 2021, 17(S1):165-171. HUANG Z H, SHUAI J, XU H J, et al. Efficiency evaluation method on integrity management of urban gas pipeline[J]. Journal of Safety Science and Technology, 2021, 17(S1):165-171.(in Chinese)
[4] 韩朱旸,翁文国.燃气管网定量风险分析方法综述[J].中国安全科学学报, 2009, 19(7):154-164. HAN Z Y, WENG. An overview of quantitative risk analysis methods for natural gas pipelines[J]. China Safety Science Journal, 2009, 19(7):154-164.(in Chinese)
[5] 付明福,张明星,朱晓曼,等.油气长输管道作业分级定量风险评价方法研究及应用[J].中国安全生产科学技术, 2019, 15(7):137-141. FU M F, ZHANG M X, ZHU X M, et al. Research and application of quantitative risk assessment method for operation classification of oil and gas long-distance pipeline[J]. Journal of Safety Science and Technology, 2019, 15(7):137-141.(in Chinese)
[6] MUHLBAUER.管道风险管理手册[M].杨嘉瑜,张德彦,李钦华,等,译. 2版.北京:中国石化出版社, 2005. MUHLBAUER. Pipeline risk management manual[M]. YANG J Y, ZHANG D Y, LI Q H, et al, Trans. 2nd ed. Beijing:China Petrochemical Press, 2005.(in Chinese)
[7] 马欣.管道风险分析指数评分法中分值调整初探[J].管道技术与设备, 2010(5):14-16. MA X. Discussion of scores adjustment in the method of index-scoring of pipeline risk analysis[J]. Pipeline Technology and Equipment, 2010(5):14-16.(in Chinese)
[8] 石磊明,刘蓉.肯特法在城市燃气管道风险分析上分项调整研究[J].北京建筑工程学院学报, 2012, 28(3):19-22. SHI L M, LIU R. Research on subitem adjustment of Kent method in the urban gas pipeline risk analysis[J]. Journal of Beijing University of Civil Engineering and Architecture, 2012, 28(3):19-22.(in Chinese)
[9] 许谨,邵必林,吴琼.肯特法在长输管道安全评价中的改进研究[J].中国安全科学学报, 2014, 24(1):109-112. XU J, SHAO B L, WU Q. Improvement of Kent method for evaluation of long-distance pipeline risk[J]. China Safety Science Journal, 2014, 24(1):109-112.(in Chinese)
[10] JABBARI M, GHOLAMNIA R, ESMAEILI R, et al. Risk assessment of fire, explosion and release of toxic gas of Siri-Assalouyeh sour gas pipeline using fuzzy analytical hierarchy process[J]. Heliyon, 2021, 7(8):e07835.
[11] BA Z N, WANG Y, FU J S, et al. Corrosion risk assessment model of gas pipeline based on improved AHP and its engineering application[J]. Arabian Journal for Science and Engineering, 2022, 47(9):10961-10979.
[12] 周立国,姚安林,曾跃辉,等.城镇燃气管道动火作业安全评价[J].中国安全生产科学技术, 2016, 12(1):61-64. ZHOU L G, YAO A L, ZENG Y H, et al. Research on risk assessment method of third-party construction damage for urban gas pipeline[J]. Journal of Safety Science and Technology, 2016, 12(1):61-64.(in Chinese)
[13] 帅健,单克.基于失效数据的油气管道定量风险评价方法[J].天然气工业, 2018, 38(9):129-138. SHUAI J, SHAN K. A quantitative risk assessment method for oil and gas pipelines based on failure data[J]. Natural Gas Industry, 2018, 38(9):129-138.(in Chinese)
[14] 杨林,朱嘉,李春娥,等.基于肯特法的城市综合管廊安全风险辨识分析[J].城市发展研究, 2018, 25(8):19-25. YANG L, ZHU J, LI C E, et al. Analysis of safety risk identification of urban utility tunnel based on Kent method[J]. Urban Development Studies, 2018, 25(8):19-25.(in Chinese)
[15] 李继春,赵建平.城市燃气铸铁管道的风险辨识与评价模型[J].工业安全与环保, 2014, 40(11):8-11. LI J C, ZHAO J P. Risk identification and assessment model of cast iron pipeline of urban gas[J]. Industrial Safety and Environmental Protection, 2014, 40(11):8-11.(in Chinese)
[16] 杨玉锋,张华兵,程万洲,等.城市燃气管道系统风险因素分析[J].煤气与热力, 2014, 34(10):B15-B19. YANG Y F, ZHANG H B, CHENG W Z, et al. Analysis of risk factors for city gas pipeline system[J]. Gas&Heat, 2014, 34(10):B15-B19.(in Chinese)
[17] 赵忠刚,姚安林,赵学芬,等.油气管道风险因素的权重赋值方法研究[J].天然气工业, 2007, 27(7):103-105, 108. ZHAO Z G, YAO A L, ZHAO X F, et al. Method of assigning weight to risk factors of oil and gas pipeline[J]. Natural Gas Industry, 2007, 27(7):103-105, 108.(in Chinese)
[18] 张琳,李长俊,苏欣,等.模糊层次分析法确定管线风险因素权重[J].石油机械, 2006, 34(6):43-45. ZHANG L, LI C J, SU X, et al. Determination of pipeline risk factor weight by fuzzy analytical hierarchy process[J]. China Petroleum Machinery, 2006, 34(6):43-45.(in Chinese)
[19] 郑力翔,汪军民.武汉都市圈同城化水平测度及时空演变特征分析[J].统计与决策, 2022, 38(17):77-81. ZHENG L X, WANG J M. Analysis on the level of urban integration and its spatial-temporal evolution in Wuhan metropolitan area[J]. Statistics and Decision, 2022, 38(17):77-81.(in Chinese)
[20] 周琳琳.模糊综合评判中属性权重确定方法及应用的研究[D].沈阳:东北大学, 2014. ZHOU L L. Research of methods and their application of determining the weights of attributes in fuzzy comprehensive evaluation[D]. Shenyang:Northeastern University, 2014.(in Chinese)
[21] 曾小康,冯阳,赖文庆,等.基于AHP-熵权法的城市燃气管道风险评价[J].中国安全生产科学技术, 2021, 17(5):130-135. ZENG, FENG Y, LAI W Q, et al. Risk assessment of urban gas pipeline based on AHP and entropy weight method[J]. Journal of Safety Science and Technology, 2021, 17(5):130-135.(in Chinese)
[22] 司明理,曾发镔,郑登锋.隧道内埋地油气管道巡检安全风险评价模型[J].油气储运, 2022, 41(10):1159-1167. SI M L, ZENG F B, ZHENG D F. Safety risk assessment model for patrol inspection of buried oil and gas pipelines in tunnels[J]. Oil&Gas Storage and Transportation, 2022, 41(10):1159-1167.(in Chinese)
[23] YAN J Y, GUO H L, ZHANG L. Research of the evaluation index system of learning city:Based on the data of China's four municipalities[M]//XIE A, HUANG X. Advances in electrical engineering and automation. Berlin, Germany:Springer, 2012:491-497.
[1] 胡俊, 疏学明, 解学才, 颜峻, 张雷. 基于定量风险评估的建筑火灾保险费率[J]. 清华大学学报(自然科学版), 2023, 63(5): 775-782.
[2] 李聪, 鲁一霏, 陈辰, 徐子烜, 杨锐. 城镇燃气管网事故应急救援特征分析及救援能力评估[J]. 清华大学学报(自然科学版), 2023, 63(10): 1537-1547.
[3] 疏学明, 颜峻, 胡俊, 吴津津, 邓博誉. 基于Bayes网络的建筑火灾风险评估模型[J]. 清华大学学报(自然科学版), 2020, 60(4): 321-327.
[4] 陈宇, 王娜, 王晋东. 利用三角模糊数的语言变量项集减项算法[J]. 清华大学学报(自然科学版), 2017, 57(8): 892-896.
[5] 李舟军, 吴春明, 王啸. 基于沙盒的Android应用风险行为分析与评估[J]. 清华大学学报(自然科学版), 2016, 56(5): 453-460.
[6] 马刚, 杜宇鸽, 杨熙, 张博, 史忠植. 复杂系统风险评估专家系统[J]. 清华大学学报(自然科学版), 2016, 56(1): 66-76,82.
[7] 苏伯尼, 黄弘, 张楠. 基于情景模拟的城市内涝动态风险评估方法[J]. 清华大学学报(自然科学版), 2015, 55(6): 684-690.
[8] 赵金龙, 唐卿, 黄弘, 苏伯尼, 李云涛, 付明. 基于数值模拟的大型外浮顶储罐区定量风险评估[J]. 清华大学学报(自然科学版), 2015, 55(10): 1143-1149.
[9] 马刚, 杜宇鸽, 荣江, 甘家瑞, 史忠植, 安波. 基于威胁传播的复杂信息系统安全风险评估[J]. 清华大学学报(自然科学版), 2014, 54(1): 35-43.
[10] 王得金, 江常青, 彭勇. 工业控制系统上基于安全域的攻击图生成[J]. 清华大学学报(自然科学版), 2014, 54(1): 44-52.
Full text



版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持