Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2023, Vol. 63 Issue (7): 1032-1040    DOI: 10.16511/j.cnki.qhdxxb.2023.26.018
  综述 本期目录 | 过刊浏览 | 高级检索 |
大型水电站坝体检测水下机器人研究进展
徐鹏飞1, 陈梅雅1, 开艳1, 王子鹏1, 李新宇2, 万刚2, 王延杰3
1. 河海大学 港口海岸与近海工程学院, 南京 210098;
2. 中国长江电力股份有限公司, 宜昌 443000;
3. 河海大学 机电工程学院, 南京 213022
Research progress on remotely operated vehicle technology for underwater inspection of large hydropower dams
XU Pengfei1, CHEN Meiya1, KAI Yan1, WANG Zipeng1, LI Xinyu2, WAN Gang2, WANG Yanjie3
1. College of Harbour, Coastal and Offshore Engineering, Hohai University, Nanjing 210098, China;
2. China Yangtze Power Co., Ltd., Yichang 443000, China;
3. College of Mechanical and Electrical Engineering, Hohai University, Nanjing 213022, China
全文: PDF(6778 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 中国是水电大国,水电站大坝除涉及自身经济效益外,还关系到人民生命财产安全,因此需要定期开展大型水电站坝体缺陷检测,确保水电站大坝安全运行。目前,使用有缆遥控水下机器人(remotely operated vehicle,ROV)进行水电站坝体缺陷检测能减少人工检测带来的诸多不利,同时提高检测精度和效率。该文对大坝环境条件和水电站坝体缺陷检测的主要内容进行了调研,梳理了大型水电站坝体检测ROV的研究现状,从坝体检测ROV总体技术、吸附技术、动力系统、检测技术、水下定位与控制系统等方面,分析了ROV在国内外水工检测领域的技术研究进展,并对坝体检测ROV关键技术的发展趋势进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐鹏飞
陈梅雅
开艳
王子鹏
李新宇
万刚
王延杰
关键词 水下机器人水电站大坝缺陷检测总体技术吸附技术声光融合检测技术动力系统水下定位与控制    
Abstract:[Significance] China uses a large amount of hydropower, and the safety of hydropower dams is related to the safety of people's lives, properties, and the national economy. Therefore, regular inspection of dam defects in large hydropower plants is vital to ensure their safe operation. Most of the common dam defects, such as cracks and leakage, originate from the surface of the structure and can affect the service life of the dams. In recent years, remotely operated vehicles (ROVs) have been used for the underwater inspection of dam defects in hydropower plants, as they can mitigate many disadvantages associated with manual inspections while improving detection accuracy and efficiency. [Progress] Thus, we explore the environmental conditions of dams and the main content of dam defect inspection in hydropower plants and review the research on ROV application for underwater inspection in large hydropower dams. We find that different sensors can be combined with ROVs to inspect large hydropower dams underwater according to detection and operation needs. The method can achieve intelligent mobile inspection and remote control of dam operation safety, automatically identify dam defect characteristics, and store shore-station interactive information. At present, ROVs are less used for inspecting dam defects in large hydropower plants but are widely used in fields such as deep-sea exploration, undersea operations, and rescue assistance. The use of ROVs for crack and leakage inspection in hydropower plants has tremendous advantages. The research on using ROVs for the intelligent inspection of other structures has certain implications for developing ROVs for the intelligent underwater inspection of large hydropower dams. We analyze the progress of ROV technology in domestic and international research on hydropower engineering in terms of the overall technology, underwater absorber, power system, inspection technology, underwater positioning, and control system. Moreover, we explore the modular design and overall scale optimization of ROVs for underwater inspection in large hydropower dams, with the design objectives of lightweight, high stability, and high anti-current and anti-disturbance capability. Thrusters with high propulsion ratios have been developed to ensure high ROV power. Adsorbers have been added to the ROV systems to control the hovering of ROVs, which can also improve their underwater anti-disturbance ability to ensure stable detection and operation. Acoustic-optical inspection technology has been proposed to improve detection accuracy, and intelligent algorithms have been used for defect identification and image post-processing. Regarding underwater positioning and control systems, a complementary approach combining information from multiple sensors has been adopted, and the dam defect inspection is validated to improve the operational capability of the ROV movement and inspection. [Conclusions and Prospects] The use of ROVs for underwater inspection in large hydropower dams has major advantages in targeting cracks and other dam defects, and the research on the intelligent inspection of hydropower dams opens up a wide range of prospects.
Key wordsremotely operated vehicle    hydropower dams    defect inspection    overall technology    underwater adsorber    acoustic-optical fusion inspection technology    power system    underwater positioning and control system
收稿日期: 2022-10-31      出版日期: 2023-06-27
基金资助:国家重点研发计划项目(2022YFB4703401,2018YFF0215005);江苏省海洋科技创新专项(HY2018-15)
作者简介: 徐鹏飞(1982—),男,教授。E-mail:xupengfei@hhu.edu.cn
引用本文:   
徐鹏飞, 陈梅雅, 开艳, 王子鹏, 李新宇, 万刚, 王延杰. 大型水电站坝体检测水下机器人研究进展[J]. 清华大学学报(自然科学版), 2023, 63(7): 1032-1040.
XU Pengfei, CHEN Meiya, KAI Yan, WANG Zipeng, LI Xinyu, WAN Gang, WANG Yanjie. Research progress on remotely operated vehicle technology for underwater inspection of large hydropower dams. Journal of Tsinghua University(Science and Technology), 2023, 63(7): 1032-1040.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2023.26.018  或          http://jst.tsinghuajournals.com/CN/Y2023/V63/I7/1032
  
  
  
  
  
  
  
[1] 陈亮.大坝表面异常巡检装置设计及裂缝检测算法研究[D].哈尔滨:哈尔滨工程大学, 2020. CHEN L. Design of patrol inspection device for abnormal dam surface and research on crack detection algorithms[D]. Harbin:Harbin Engineering University, 2020.(in Chinese)
[2] 王文超,谢洪鑫,李佳栋,等.智能巡检机器人在大型水电站的应用[J].云南水力发电, 2022, 38(8):298-300. WANG W C, XIE H X, LI J D, et al. Application of intelligent patrol inspection robot in large hydropower station[J]. Yunnan Water Power, 2022, 38(8):298-300.(in Chinese)
[3] 于庚,凌宏杰,王志东,等.深海作业型机器人总体设计及性能分析[J].舰船科学技术, 2020, 42(4):90-95. YU G, LING H J, WANG Z D, et al. Overall design and performance analysis of deep-sea ROV[J]. Ship Science and Technology, 2020, 42(4):90-95.(in Chinese)
[4] CAPOCCI R, DOOLY G, OMERDIC'E, et al. Inspection-class remotely operated vehicles:A review[J]. Journal of Marine Science and Engineering, 2017, 5(1):13.
[5] 王秘学,谭界雄,田金章,等.以ROV为载体的水库大坝水下检测系统选型研究[J].人民长江, 2015, 46(22):95-98, 102. WANG M X, TAN J X, TIAN J Z, et al. Study on selection of underwater detection equipment of reservoirs and dams using ROV as carrier[J]. Yangtze River, 2015, 46(22):95-98, 102.(in Chinese)
[6] 刘畅.腹部作业型ROV定深控制及水面监控系统设计[D].武汉:华中科技大学, 2017. LIU C. The depth control and surface monitoring system design on an abdominal operating ROV[D]. Wuhan:Huazhong University of Science&Technology, 2017.(in Chinese)
[7] 刘晓阳,杨润贤,高宁.水下机器人发展现状与发展趋势探究[J].科技创新与生产力, 2018(6):19-20. LIU X Y, YANG R X, GAO N. Exploration on development status and trend of underwater robots[J]. Sci-Tech Innovation&Productivity, 2018(6):19-20.(in Chinese)
[8] 陈从平,聂葳,吴喆,等.基于视觉机器人的大坝水下表面裂缝检测系统设计[J].三峡大学学报(自然科学版), 2016, 38(5):72-74, 86. CHEN C P, NIE W, WU Z, et al. Design of underwater dam surface crack detection system based on visual robot[J]. Journal of China Three Gorges University (Natural Sciences), 2016, 38(5):72-74, 86.(in Chinese)
[9] SUGIMOTO H, MORIYA Y, OGASAWARA T. Underwater survey system of dam embankment by remotely operated vehicle[C]//Proceedings of 2017 IEEE Underwater Technology (UT). Busan, Republic of Korea:IEEE, 2017:1-6.
[10] RIDAO P, CARRERAS M, RIBAS D, et al. Visual inspection of hydroelectric dams using an autonomous underwater vehicle[J]. Journal of Field Robotics, 2010, 27(6):759-778.
[11] SHIMONO S, TOYAMA S, NISHIZAWA U. Development of underwater inspection system for dam inspection concept and evaluation of simplified dynamics model[C]//Proceedings of the OCEANS 2015 MTS/IEEE Washington. Washington, USA:IEEE, 2015:1-6.
[12] SHIMONO S, TOYAMA S, NISHIZAWA U. Development of underwater inspection system for dam inspection:Results of field tests[C]//Proceedings of the OCEANS 2016 MTS/IEEE Monterey. Monterey, USA:IEEE, 2016:1-4.
[13] SAKAGAMI N, YUMOTO Y, TAKEBAYASHI T, et al. Development of dam inspection robot with negative pressure effect plate[J]. Journal of Field Robotics, 2019, 36(8):1422-1435.
[14] YANG Y, HIROSE S, DEBENEST P, et al. Development of a stable localized visual inspection system for underwater structures[J]. Advanced Robotics, 2016, 30(21):1415-1429.
[15] 孙玉山,庞永杰,万磊,等.堤坝检测水下机器人GDROV方案研究[J].船海工程, 2006, 35(1):84-86. SUN Y S, PANG Y J, WAN L, et al. Design plan of GDROV for the underwater inspecting robot of dikes[J]. Ship&Ocean Engineering, 2006, 35(1):84-86.(in Chinese)
[16] 贾洪刚.水下机器人方案设计及在水电站的应用[EB/OL].(2020-09-29)[2022-10-28]. http://www.hydropower.org.cn/showNewsDetail.asp?nsId=29021. JIA H G. Underwater robot scheme design and application in hydropower stations[EB/OL].(2020-09-29)[2022-10-28]. http://www.hydropower.org.cn/showNewsDetail.asp?nsId=29021.(in Chinese)
[17] 刘福,马保东,马祥,等.水下机器人在水库大坝渗漏检测中的应用[J].陕西水利, 2022(3):197-199. LIU F, MA B D, MA X, et al. Application of ROVs in reservoir dam leakage inspection[J]. Shaanxi Water Resources, 2022(3):197-199.(in Chinese)
[18] JOUVENCEL B, DUCOIN M, FORGIARINI J, et al. Modelling and control of an inspection class ROV for deep-sea intervention[J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(6):2982-2992.
[19] 仲昭杰.一种船体清洗机器人设计及关键技术研究[D].镇江:江苏科技大学, 2022. ZHONG Z J. Design and key technology research of a hull cleaning robot[D]. Zhenjiang:Jiangsu University of Science and Technology, 2022.(in Chinese)
[20] 谭界雄,田金章,王秘学.水下机器人技术现状及在水利行业的应用前景[J].中国水利, 2018(12):33-36. TAN J X, TIAN J Z, WANG M X. Future application of underwater robots in water sector and its technology status[J]. China Water Resources, 2018(12):33-36.(in Chinese)
[21] 张帅,肖晶晶.水下矢量推进器研究综述[J].舰船科学技术, 2019, 41(4):1-5. ZHANG S, XIAO J J. Review of underwater vector propulsion devices[J]. Ship Science and Technology, 2019, 41(4):1-5.(in Chinese)
[22] 罗庆生,刘星栋,弓瑞,等.矢量喷水推进式水下机器人的建模仿真与验证[J].应用科技, 2017, 44(2):7-14. LUO Q S, LIU X D, GONG R, et al. Simulation and experimental validation ofan autonomous underwater vehicle equipped with multi-vectored thrusters[J]. Applied Science and Technology, 2017, 44(2):7-14.(in Chinese)
[23] XU P F, HAN C B, LV T, et al. Underwater absorber for a remotely operated vehicle[J]. Journal of Marine Science and Engineering, 2022, 10(4):485.
[24] 徐鹏飞,孟昊,李同飞,等.一种基于线结构光的水下目标三维信息测量方法[J].机器人, 2022, 44(5):564-573. XU P F, MENG H, LI T F, et al. A 3D information measuring method of underwater targets based on line-structured light[J]. Robot, 2022, 44(5):564-573.(in Chinese)
[25] 朱俊,张洪星.三维成像技术在大坝水下垂直结构面缺陷检测中的应用[J].水利技术监督, 2018(5):47-50. ZHU J, ZHANG H X. Application of 3D imaging technology in underwater vertical structural plane defect detection of dam[J]. Technical Supervision in Water Resources, 2018(5):47-50.(in Chinese)
[26] 王超,贾贺,张社荣,等.基于图像的混凝土表面裂缝量化高效识别方法[J].水力发电学报, 2021, 40(3):134-144. WANG C, JIA H, ZHANG S R, et al. Image-based quantitative and efficient identification method for concrete surface cracks[J]. Journal of Hydroelectric Engineering, 2021, 40(3):134-144.(in Chinese)
[27] 张柏楠,韩勃,李宁博,等.长距离水工隧洞运营期无人检测技术及病害识别方法研究进展[J].应用基础与工程科学学报, 2021, 29(5):1245-1264. ZHANG B N, HAN B, LI N B, et al. Research progress on unmanned inspection technology and disease identification method of long-distance hydraulic tunnels in operation period[J]. Journal of Basic Science and Engineering, 2021, 29(5):1245-1264.(in Chinese)
[28] 刘鑫,魏延辉,高延滨. ROV运动控制技术综述[J].重庆理工大学学报(自然科学), 2014, 28(7):80-85. LIU X, WEI Y H, GAO Y B. Review of ROV motioncontrol technology[J]. Journal of Chongqing University of Technology (Natural Science), 2014, 28(7):80-85.(in Chinese)
[1] 李佳龙, 陈永灿, 李永龙, 王皓冉, 谢辉. 泥沙淤积环境下清淤置换模块设计及检测效率分析[J]. 清华大学学报(自然科学版), 2023, 63(7): 1104-1112.
[2] 陈永灿, 陈嘉杰, 王皓冉, 巩宇, 冯跃, 刘昭伟, 祁宁春, 刘梅, 李永龙, 谢辉. 大直径长引水隧洞水下检测机器人系统关键技术[J]. 清华大学学报(自然科学版), 2023, 63(7): 1015-1031.
[3] 王皓冉, 谢辉, 陈永灿, 刘康, 李正文, 李永龙. 消力池底板混凝土磨蚀智能检测与数值仿真[J]. 清华大学学报(自然科学版), 2023, 63(7): 1095-1103.
[4] 祁宁春, 聂强, 来记桃, 陈永灿, 李永龙. 水电站多元场景水下智能巡检关键技术与实践[J]. 清华大学学报(自然科学版), 2023, 63(7): 1124-1134.
[5] 周恺, 张睿哲, 叶宽, 李鸿达, 王哲, 黄松岭. 基于同步压缩小波变换的接地扁钢缺陷电磁超声SH导波检测方法[J]. 清华大学学报(自然科学版), 2022, 62(12): 2013-2020.
[6] 刘仁杰, 孙跃文, 刘锡明, 苗积臣, 周立业, 丛鹏. 基于螺旋CT的高温气冷堆石墨构件及碳砖缺陷检测方法[J]. 清华大学学报(自然科学版), 2021, 61(4): 367-376.
[7] 管志斌, 王晓萌, 辛伟, 王嘉捷. 源代码缺陷检测数据生成及标注方法[J]. 清华大学学报(自然科学版), 2021, 61(11): 1240-1245.
[8] 王晓萌, 管志斌, 辛伟, 王嘉捷. 基于深度卷积神经网络的源代码缺陷检测方法[J]. 清华大学学报(自然科学版), 2021, 61(11): 1267-1272.
[9] 游尔胜, 佘顶, 石磊. Brayton空间核能系统质量估算模型[J]. 清华大学学报(自然科学版), 2018, 58(5): 450-455.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn