Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2023, Vol. 63 Issue (7): 1087-1094    DOI: 10.16511/j.cnki.qhdxxb.2023.26.007
  论文 本期目录 | 过刊浏览 | 高级检索 |
海上风电基础冲刷动力特性及在线监测
王鑫1, 林鹏1, 黄浩东1, 袁兢1,3, 邱旭2, 刘鑫2
1. 清华大学 水利水电工程系, 北京 100084;
2. 中国华能集团清洁能源技术研究院有限公司, 北京 102209;
3. 清华大学 水沙科学与水利水电工程国家重点实验室, 北京 100084
Scour dynamic properties and online monitoring of offshore wind power foundation
WANG Xin1, LIN Peng1, HUANG Haodong1, YUAN Jing1,3, QIU Xu2, LIU Xin2
1. Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China;
2. China Huaneng Clean Energy Technology Research Institute Co., Ltd., Beijing 102209, China;
3. State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(7370 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 海上风电由于其风资源条件好,不受占地条件约束等优点,在全球能源战略中的地位不断提升。海上风电基础广泛存在冲刷问题,冲刷会导致基础承载力下降、结构固有频率变化和海底输电管缆暴露等风险,因此对基础冲刷的监测和预警至关重要。该文首先分析了基础冲刷的动力特性,建立了风机-塔筒-基础一体化仿真模型,研究了基础冲刷深度与基础固有频率的相关关系,并分析了冲刷对结构动力响应的影响;其次提出了基础冲刷低频振动监测方法,并研发了一套海上风电基础冲刷低频振动监测系统。通过该系统在江苏某海上风电场的运用实例分析,探讨了未来基础冲刷监测的改进方向,研究成果可为国内外海上风电工程提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王鑫
林鹏
黄浩东
袁兢
邱旭
刘鑫
关键词 海上风电基础冲刷在线监测结构振动频率    
Abstract:Because of favorable wind resource conditions and a lack of land occupation limitations, offshore wind power has been gaining an increasingly important role in the global energy strategy. However, scour is a widespread problem around offshore wind power foundations, resulting in a decrease in foundation bearing capacity, changes in structural natural frequency, and submarine pipeline exposure. As a result, monitoring and early warning of scour are essential. This study studied the scour process and its dynamic characteristics before proposing a method for identifying the scour initiation in design. For scour monitoring, multibeam sonars, the most often used scour measurement method, have problems of high cost and discontinuous operation, making it impossible to provide on-site scour data in a timely manner. Herein, a method for scour monitoring using structural vibration frequency is proposed. Then, based on ABAQUS, an integrated model of a wind turbine tower foundation was established to study the correlation between the scour depth and the first-order natural frequency, and the feasibility of using the structural vibration frequency to estimate the scour depth. As a result, a scour monitoring method and system based on low-frequency vibration data were developed. The data is acquired in real time by vibration sensors installed in specific parts and processed using a fast Fourier transform after data filtering to obtain the time-domain and frequency-domain characteristics necessary to determine whether the scour is normal. The numerical simulation results revealed that the first-order frequency of the structure was basically linear with the scour depth and that the frequency decreased by 0.009 3 Hz (3.3%), 0.017 2 Hz (6.3%) and 0.027 0 Hz (10.2%) for the scour depths of 3.0 m, 6.0 m and 9.0 m, respectively, compared to the scour-free condition (0.281 2 Hz). The monitoring data from an offshore wind farm in Jiangsu revealed that: (1) The installation orientation and height of the vibration sensors had essentially little effect on the first-order frequency; however, the vibration amplitude decreased as the installation elevation drops. (2) The variations of scour depth and frequency were basically consistent with the numerical results: the scour depths of turbine units #7, #15 and #17 increased from 3.47 m, 5.21 m and 6.11 m in September 2019 to 5.12 m, 5.48 m and 6.95 m in April 2020, while their vibration frequencies decreased from November 2019 to July 2020 by 0.001 3 Hz, 0.001 1 Hz and 0.002 3 Hz, respectively. Due to the lack of monitoring data, the frequency and scour depth do not fully correspond in time and space. There is an inconsistency between the change in frequency and scour depth of different units, but the monitoring data of all units show that the correlation between the two is clear. As a result, this paper suggests that when the frequency drops by more than 0.010 0 Hz in operation, the system will issue an early warning message prompting the cause of the accident to be investigated. The paper further discussed the future direction of the scour monitoring improvement, and the study results can be used as a reference for similar projects worldwide.
Key wordsoffshore wind power    foundation scour    online monitoring    structural vibration    frequency
收稿日期: 2022-10-29      出版日期: 2023-06-27
基金资助:中国华能集团有限公司科技项目(HNKJ20-H53,HNKJ19-H16);清华大学水沙科学与水利水电工程国家重点实验室项目(2022-KY-05)
通讯作者: 林鹏,教授,E-mail:celinpe@tsinghua.edu.cn     E-mail: celinpe@tsinghua.edu.cn
作者简介: 王鑫(1998—),男,博士研究生。
引用本文:   
王鑫, 林鹏, 黄浩东, 袁兢, 邱旭, 刘鑫. 海上风电基础冲刷动力特性及在线监测[J]. 清华大学学报(自然科学版), 2023, 63(7): 1087-1094.
WANG Xin, LIN Peng, HUANG Haodong, YUAN Jing, QIU Xu, LIU Xin. Scour dynamic properties and online monitoring of offshore wind power foundation. Journal of Tsinghua University(Science and Technology), 2023, 63(7): 1087-1094.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2023.26.007  或          http://jst.tsinghuajournals.com/CN/Y2023/V63/I7/1087
  
  
  
  
  
  
  
  
[1] FAN Q X, WANG X, YUAN J, et al. A review of the development of key technologies for offshore wind power in China[J]. Journal of Marine Science and Engineering, 2022, 10(7):929.
[2] 王鑫,林鹏,陈晓路,等.如东海上风力机组基础冲刷机理数值模拟研究[J].太阳能学报, 2021, 42(12):239-244. WANG X, LIN P, CHEN X L, et al. Numerical simulation on scour mechanism of Rudong offshore turbine foundation[J]. Acta Energiae Solaris Sinica, 2021, 42(12):239-244.(in Chinese)
[3] PRENDERGAST L J, GAVIN K. A review of bridge scour monitoring techniques[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2014, 6(2):138-149.
[4] BREUSERS H N C, NICOLLET G, SHEN H W. Local scour around cylindrical piers[J]. Journal of Hydraulic Research, 1977, 15(3):211-252.
[5] RAUDKIVI A J, ETTEMA R. Clear-water scour at cylindrical piers[J]. Journal of Hydraulic Engineering, 1983, 109(3):338-350.
[6] MELVILLE B W. Pier and abutment scour:Integrated approach[J]. Journal of Hydraulic Engineering, 1997, 123(2):125-136.
[7] QI W G, GAO F P. Equilibrium scour depth at offshore monopile foundation in combined waves and current[J]. Science China Technological Sciences, 2014, 57(5):1030-1039.
[8] WHITEHOUSE R. Scour at marine structures:A manual for practical applications[M]. London:Thomas Telford, 1998.
[9] 严根华,古华,陆忠民,等.基础冲刷对海上风电场塔架支撑系统动力特性的影响分析[J].中国工程科学, 2011, 13(1):69-73, 92. YAN G H, GU H, LU Z M, et al. The influence analysis of foundation scouring on dynamic characteristics of the tower supporting system of offshore wind farm[J]. Strategic Study of CAE, 2011, 13(1):69-73, 92.(in Chinese)
[10] SØRENSEN S P H, IBSEN L B. Assessment of foundation design for offshore monopiles unprotected against scour[J]. Ocean Engineering, 2013, 63(1):17-25.
[11] PRENDERGAST L J, HESTER D, GAVIN K, et al. An investigation of the changes in the natural frequency of a pile affected by scour[J]. Journal of Sound and Vibration, 2013, 332(25):6685-6702.
[12] PRENDERGAST L J, GAVIN K, DOHERTY P. An investigation into the effect of scour on the natural frequency of an offshore wind turbine[J]. Ocean Engineering, 2015, 101(1):1-11.
[13] 宋波,赵伟娜,双妙.冲刷深度对海上风电塔地震动力响应的影响分析[J].工程科学学报, 2019, 41(10):1351-1359. SONG B, ZHAO W N, SHUANG M. Analysis of the influence of scour depth on the dynamic response of offshore wind turbine towers under earthquake action[J]. Chinese Journal of Engineering, 2019, 41(10):1351-1359.(in Chinese)
[14] WEIJTJENS W, VERBELEN T, CAPELLO E, et al. Vibration based structural health monitoring of the substructures of five offshore wind turbines[J]. Procedia Engineering, 2017, 199(2017):2294-2299.
[15] TANG D Y, ZHAO M. Real-time monitoring system for scour around monopile foundation of offshore wind turbine[J]. Journal of Civil Structural Health Monitoring, 2021, 11(3):645-660.
[16] CHIEW Y M, MELVILLE B W. Local scour around bridge piers[J]. Journal of Hydraulic Research, 1987, 25(1):15-26.
[17] SOULSBY R L. Dynamics of marine sands:A manual for practical applications[J]. Oceanographic Literature Review, 1997, 9(44):947.
[18] KEULEGAN G H. Laws of turbulent flow in open channels[J]. Journal of Research of the National Bureau of Standards, 1938, 21(1):701-741.
[19] LEBLANC C, HOULSBY G T, BYRNE B W. Response of stiff piles in sand to long-term cyclic lateral loading[J]. Géotechnique, 2010, 60(2):79-90.
[20] 樊启祥,林鹏,魏鹏程,等.智能建造闭环控制理论[J].清华大学学报(自然科学版), 2021, 61(7):660-670. FAN Q X, LIN P, WEI P C, et al. Closed-loop control theory of intelligent construction[J]. Journal of Tsinghua University (Science&Technology), 2021, 61(7):660-670.(in Chinese)
[1] 安瑞楠, 林鹏, 陈道想, 安邦, 卢冠楠, 林之涛. 超大混凝土结构温度梯度监测与温度场演化[J]. 清华大学学报(自然科学版), 2023, 63(7): 1050-1059.
[2] 江海龙, 王晓光, 王家骏, 柳汀, 林麒. 全模颤振四绳支撑系统运动特性与稳定性[J]. 清华大学学报(自然科学版), 2023, 63(11): 1856-1867.
[3] 王卫, 王百智, 陈松贵, 闫俊义, 金峰, 江朝华. 海上风电单桩胶结抛石体防冲刷措施模型试验研究[J]. 清华大学学报(自然科学版), 2022, 62(9): 1401-1407.
[4] 易佩, 景志滨, 徐飞, 陈磊, 齐军, 姜希伟, 高旭泽. 考虑频率安全约束的电力系统临界惯量计算[J]. 清华大学学报(自然科学版), 2022, 62(10): 1721-1729.
[5] 花赟玥, 杨超然, 何国庆, 辛焕海. 考虑小干扰稳定和频率稳定的虚拟惯量配置分析[J]. 清华大学学报(自然科学版), 2021, 61(5): 437-445.
[6] 黄碧月, 陈雅皓, 孙海顺, 毛俞杰, 韩应生, 王东泽. 考虑静止无功补偿器的直驱风电并网系统次同步振荡[J]. 清华大学学报(自然科学版), 2021, 61(5): 446-456.
[7] 姚志峰, 赖桂桦, 刘婧, 曾永顺. 前缘空化对弹性水翼振动特性影响数值模拟[J]. 清华大学学报(自然科学版), 2021, 61(11): 1325-1333.
[8] 印定坤,陈正侠,李骐安,贾海峰,刘正权,沈雷. 降雨特征对多雨城市海绵改造小区径流控制效果的影响[J]. 清华大学学报(自然科学版), 2021, 61(1): 50-56.
[9] 赵蕾蕾,李翀,季林红,杨铁牛. 基于虚拟现实的自动驾驶模式中晕动受试者的脑电特征[J]. 清华大学学报(自然科学版), 2020, 60(12): 993-998.
[10] 管高峰, 徐登峰, 朱煜, 喻强, 李强. 基于弹性接触下的微幅滚动隔振机构[J]. 清华大学学报(自然科学版), 2019, 59(9): 780-784.
[11] 荣海, 周凯, 毛飞龙. 基于零偏置电流的磁悬浮电主轴动不平衡力抑制[J]. 清华大学学报(自然科学版), 2019, 59(8): 683-688.
[12] 柴跃廷, 于潇, 刘镇铭. 电子商务可信交易保障公共服务平台设计与实现[J]. 清华大学学报(自然科学版), 2018, 58(9): 802-807,820.
[13] 李建江, 滑水亮, 吴杰, 张凯. 基于动态获取高频率键的MapReduce性能优化算法[J]. 清华大学学报(自然科学版), 2018, 58(12): 1059-1065.
[14] 文武松, 张颖超, 王璐, 赵争鸣, 聂金铜. 并网功率变换器的电网电压同步算法[J]. 清华大学学报(自然科学版), 2017, 57(6): 637-643.
[15] 于广, 王立平, 吴军, 王冬. 3自由度并联主轴头的动力学建模及动态特性[J]. 清华大学学报(自然科学版), 2017, 57(12): 1317-1323.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn