Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2023, Vol. 63 Issue (7): 1095-1103    DOI: 10.16511/j.cnki.qhdxxb.2023.26.022
  论文 本期目录 | 过刊浏览 | 高级检索 |
消力池底板混凝土磨蚀智能检测与数值仿真
王皓冉1, 谢辉1, 陈永灿2, 刘康2, 李正文2, 李永龙1
1. 清华四川能源互联网研究院, 成都 610071;
2. 清华大学 水沙科学与水利水电工程国家重点实验室, 北京 100084
Intelligent detection and numerical simulation analysis of concrete abrasion of astilling basin floor
WANG Haoran1, XIE Hui1, CHEN Yongcan2, LIU Kang2, LI Zhengwen2, LI Yonglong1
1. Tsinghua-Sichuan Energy Internet Research Institute, Chengdu 610071, China;
2. State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(9508 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 水工混凝土磨蚀损伤是造成消力池破坏的主要原因,长期发展会对水利枢纽汛期行洪安全产生威胁。该文采用自主研发的水下机器人(remotely operated vehicle,ROV)对消力池底板磨蚀损伤进行了全面探测,根据骨料暴露比(aggregate exposure ratio,AER)量化表征磨蚀损伤程度,阐明了消力池底板磨蚀分布规律,并通过三维数值模拟进一步分析了消力池水动力要素对底板混凝土磨蚀的影响。结果表明: AER能有效反映水工混凝土磨蚀损伤情况,消力池前段及尾坎附近区域底板磨蚀破坏程度较高。高流速及尾坎附近的淤积回流作用是消力池底板磨蚀的重要因素,水跃漩滚区水气掺混效应减缓了磨蚀破坏,消力池前端无明显负压区,但流速较大,容易产生磨蚀等问题。研究成果对消力池的安全运行与结构评价具有显著的应用价值与推广意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王皓冉
谢辉
陈永灿
刘康
李正文
李永龙
关键词 消力池磨蚀混凝土水下机器人骨料暴露比水力分析    
Abstract:[Objective] The abrasion damage of hydraulic concrete is the main reason for the destruction of stilling basins. The long-term development of damage will threaten the safety of flood discharge in the flood season. Manual inspection is often used to evaluate the erosion condition of the stilling basin bottom plate in a project, which requires pumping and desilting. The inspection cost is high and cannot be determined during operation. Based on intelligent detection using a remotely operated vehicle (ROV), this research uses the abrasion evaluation method of the two-dimensional aggregate exposure ratio (AER) of hydraulic concrete to study the abrasion distribution of a stilling basin bottom, which has considerable application research value. [Methods] In this paper, the surface flow stilling basin of a large water conservancy project in Southwest China is taken as the study site. The detection equipment is a self-developed, ROV that has the functions of underwater crawling, floating, bottom plate dredging, and underwater acoustic positioning. The vehicle is equipped with a high-definition camera and can comprehensively detect the bottom plate abrasion damage of a stilling basin. According to the abrasion process of hydraulic concrete, an abrasion characteristic classification table is proposed, the abrasion damage degree is quantitatively characterized according to the AER, and the abrasion distribution of the bottom plate of the stilling basin is clarified. On this basis, the influence of hydrodynamic factors on the abrasion of the bottom slab of the stilling basin is further analyzed using three-dimensional numerical simulation. [Results] The results showed that: (1) The distribution law of the abrasion damage of the bottom plate of the stilling basin was basically consistent with the AER distribution. The AER could effectively reflect the abrasion damage of hydraulic concrete. (2) The abrasion in the front and rear sections of the stilling basin was severe, and there were different degrees of concrete mortar damage, aggregate exposure, falling off, and other undesirable phenomena. (3) The water flow in the stilling basin of the surface outlet fluctuateed violently, and the bottom velocity reached the maximum in the front area of the stilling basin; thus, this region was prone to scour, abrasion, and other damage. (4) Influenced by the tail sill of the stilling basin, the water flowed back in front of the tail sill, forming a vortex. The sand and stone deposition oscillated with the backflow vortex, continuously scouring the bottom plate of the stilling basin, resulting in an increase in the degree of abrasion in this area. [Conclusions] The AER can reflect the abrasion damage of the stilling basin bottom plate concrete to a certain extent and can be used to supplement the abrasion quantitative evaluation index system. The high flow velocity and backflow caused by sedimentation near the end sill are important factors leading to the erosion of the stilling basin floor. The research results have considerable application value and promotion importance for the safe operation and evaluation of a stilling basin structure.
Key wordsstilling basin    abrasion    concrete    remotely operated vehicle    aggregate exposure ratio    hydrodynamic analysis
收稿日期: 2022-12-23      出版日期: 2023-06-27
基金资助:国家自然科学基金资助项目(52009064,U21A20157);四川省科技计划资助项目(2022YFQ0080)
通讯作者: 谢辉,高级工程师,E-mail:xiexieh@163.com     E-mail: xiexieh@163.com
作者简介: 王皓冉(1988—),男,正高级工程师。
引用本文:   
王皓冉, 谢辉, 陈永灿, 刘康, 李正文, 李永龙. 消力池底板混凝土磨蚀智能检测与数值仿真[J]. 清华大学学报(自然科学版), 2023, 63(7): 1095-1103.
WANG Haoran, XIE Hui, CHEN Yongcan, LIU Kang, LI Zhengwen, LI Yonglong. Intelligent detection and numerical simulation analysis of concrete abrasion of astilling basin floor. Journal of Tsinghua University(Science and Technology), 2023, 63(7): 1095-1103.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2023.26.022  或          http://jst.tsinghuajournals.com/CN/Y2023/V63/I7/1095
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] 王永伟.关于水利工程中消力池设置的几点看法[J].城市建设理论研究, 2014(29):1934. WANG Y W. Views on setting stilling basin in water conservancy project[J]. Research on Urban Construction Theory, 2014(29):1934.(in Chinese)
[2] 王皓冉,汪双,陈永灿,等.无人测量系统在消力池水下地形测量中的应用[J].水力发电学报, 2019, 38(12):11-18. WANG H R, WANG S, CHEN Y C, et al. Application of unmanned intelligent technologies in underwater topographic survey of stilling basins[J]. Journal of Hydroelectric Engineering, 2019, 38(12):11-18.(in Chinese)
[3] 郭军,周胜,孙双科,等.高坝大流量底流消能工程设计运行实践经验总结分析[C]//中国水利学会.第二届全国水力学与水利信息学学术大会论文集.中国,成都:四川大学出版社, 2005:10. GUO J, ZHOU S, SUN S K, et al. The Summary and analysis of design and operation experience of high dam large discharge underflow energy dissipation project[C]//Chinese Hydraulic Engineering Society. The 2nd Conference on Hydraulics and hydroinformatics in China. Chengdu, China:Sichuan University Press, 2005:10.(in Chinese)
[4] 冯超,周洪林,张云海.安康大坝表孔消力池底板破坏原因分析及补强加固处理[J].大坝与安全, 2009(5):52-55. FENG C, ZHOU H L, ZHANG Y H. Analysis on damage reason of basin plate of stilling pool and reinforcement at Ankang dam[J]. Dam&Safety, 2009(5):52-55.(in Chinese)
[5] 叶德震.金安桥水电站消力池底板破坏反演分析研究[D].天津:天津大学, 2018. YE D Z. Inversion analysis and research on the failure of stilling basin plate in Jin'anqiao hydropower station[D]. Tianjin:Tianjin University, 2018.(in Chinese)
[6] 沈勤.水下机器人技术在水利工程检测中的应用[J].中国战略新兴产业, 2018(36):157-158, 160. SHEN Q. Application of underwater robot technology in water conservancy project detection[J]. China Strategic Emerging Industry, 2018(36):157-158, 160.(in Chinese)
[7] 陈霞,杜鹃,蒋婷婷,等.浅谈有缆遥控机器人在水利工程检测中的应用[J].四川水利, 2020, 41(3):104-106. CHEN X, DU J, JIANG T T, et al. Brief talk on the application of remote operated vehicle in water conservancy project detection[J]. Sichuan Water Resources, 2020, 41(3):104-106.(in Chinese)
[8] 张冲,曹雪峰.浅议ROV在水利水电设施检测中的应用[J].山东水利, 2019(9):12-13. ZHANG C, CAO X F. Application of ROV to the detection of water conservancy and hydropower facilities[J]. Shandong Water Resources, 2019(9):12-13.(in Chinese)
[9] 李永龙,王皓冉,张华.水下机器人在水利水电工程检测中的应用现状及发展趋势[J].中国水利水电科学研究院学报, 2018, 16(6):586-590. LI Y L, WANG H R, ZHANG H. Application status and development trend of underwater robot in water and hydropower engineering detection[J]. Journal of China Institute of Water Resources and Hydropower Research, 2018, 16(6):586-590.(in Chinese)
[10] 林向阳.亭子口水利枢纽消力池水下机器人智能巡检系统初探[J].四川水利, 2018, 39(5):41-43, 52. LIN X Y. Preliminary study on intelligent inspection system for underwater robot of stilling pool in Tingzikou hydro-junction[J]. Sichuan Water Resources, 2018, 39(5):41-43, 52.(in Chinese)
[11] MALLIOS A, RIDAO P, RIBAS D, et al. Toward autonomous exploration in confined underwater environments[J]. Journal of Field Robotics, 2016, 33(7):994-1012.
[12] RIDAO P, CARRERAS M, RIBAS D, et al. Visual inspection of hydroelectric dams using an autonomous underwater vehicle[J]. Journal of Field Robotics, 2010, 27(6):759-778.
[13] 黄细彬.高速含沙掺气水流及磨蚀机理的研究[D].南京:河海大学, 2001. HUANG X B. Study on turbulent characteristics and abrasion mechanisms of high-velocity sediment-laden and aerated flow[D]. Nanjing:Hohai University, 2001.(in Chinese)
[14] International Association for Testing Materials. Standard test method for abrasion resistance of concrete (underwater method):ASTM C1138-97[S]. Philadelphia:International Association for Testing Materials, 1997.
[15] KOZJEK D, PAVLOVČIČU U, KRYŽANOWSKI A, et al. Three-dimensional characterization of concrete's abrasion resistance using laser profilometry[J]. Strojniški vestnik-Journal of Mechanical Engineering, 2015, 61(5):311-318.
[16] KRYŽANOWSKI A, MIKOŠ M,ŠUŠTERŠIČ J, et al. Testing of concrete abrasion resistance in hydraulic structures on the Lower Sava River[J]. Strojniški vestnik-Journal of Mechanical Engineering, 2012, 58(4):245-254.
[17] CHOI S, BOLANDER J E. A topology measurement method examining hydraulic abrasion of high workability concrete[J]. KSCE Journal of Civil Engineering, 2012, 16(5):771-778.
[18] 戴晓兵,李延农.混凝土表面磨蚀破坏划分标准初议[C]//中国水力发电工程学会.水力学与水利信息学进展2009.中国,西安:西安交通大学出版社, 2009:3. DAI X B, LI Y N. A preliminary discussion on the criteria for classifying abrasion damage to concrete surfaces[C]//China Society for Hydropower Engineering. Advances in Hydraulics and Hydroinformatics 2009. Xi'an, China:Xi'an Jiaotong University Press, 2009:3.(in Chinese)
[19] HAN J G, WANG K J, WANG X H, et al. 2D image analysis method for evaluating coarse aggregate characteristic and distribution in concrete[J]. Construction and Building Materials, 2016, 127:30-42.
[20] LI Y L, ZHANG H, WANG S, et al. Image-based underwater inspection system for abrasion of stilling basin slabs of dam[J]. Advances in Civil Engineering, 2019:6924976.
[21] 孙双科,周胜,时启燧.三峡水利枢纽泄洪深孔的泥沙磨损问题探析[J].水利学报, 2001, 32(7):73-78. SUN S K, ZHOU S, SHI Q S. On sediment abrasion of deep level outlet in the Three Gorges Project[J]. Journal of Hydraulic Engineering, 2001, 32(7):73-78.(in Chinese)
[22] LI Y L, LI X X, WANG H R, et al. Exposed aggregate detection of stilling basin slabs using attention U-net network[J]. KSCE Journal of Civil Engineering, 2020, 24(6):1740-1749.
[23] 徐秉衡.泄水工程的磨损问题[J].东北水利水电, 1990, 8(10):2-7. XU B H. Wear problem of discharge engineering[J]. Northeast Water Conservancy and Hydropower, 1990, 8(10):2-7.(in Chinese)
[24] 吴玉亭,吴春娟.平底宽矩形断面水跃位置的确定[J].现代农业科技, 2010(10):223, 225. WU Y T, WU C J. Determination of hydraulic jump position of flat bottom wide rectangular section[J]. Modern Agricultural Sciences and Technology, 2010(10):223, 225.(in Chinese)
[25] 舒安平,费祥俊.高含沙水流挟沙能力[J].中国科学G辑:物理学力学天文学, 2008, 38(6):653-667. SHU A P, FEI X J. Sediment transport capacity of hyperconcentrated flow[J]. Science in China Series G:Physics, Mechanics, and Astronomy, 2008, 38(6):653-667.(in Chinese)
[1] 安瑞楠, 林鹏, 陈道想, 安邦, 高阳阳. 锚碇大体积混凝土智能通水温控方法与系统[J]. 清华大学学报(自然科学版), 2024, 64(4): 601-611.
[2] 黄贲, 康飞, 唐玉. 基于目标检测的混凝土坝裂缝实时检测方法[J]. 清华大学学报(自然科学版), 2023, 63(7): 1078-1086.
[3] 李佳龙, 陈永灿, 李永龙, 王皓冉, 谢辉. 泥沙淤积环境下清淤置换模块设计及检测效率分析[J]. 清华大学学报(自然科学版), 2023, 63(7): 1104-1112.
[4] 陈永灿, 陈嘉杰, 王皓冉, 巩宇, 冯跃, 刘昭伟, 祁宁春, 刘梅, 李永龙, 谢辉. 大直径长引水隧洞水下检测机器人系统关键技术[J]. 清华大学学报(自然科学版), 2023, 63(7): 1015-1031.
[5] 安瑞楠, 林鹏, 陈道想, 安邦, 卢冠楠, 林之涛. 超大混凝土结构温度梯度监测与温度场演化[J]. 清华大学学报(自然科学版), 2023, 63(7): 1050-1059.
[6] 徐鹏飞, 陈梅雅, 开艳, 王子鹏, 李新宇, 万刚, 王延杰. 大型水电站坝体检测水下机器人研究进展[J]. 清华大学学报(自然科学版), 2023, 63(7): 1032-1040.
[7] 李明, 林鹏, 李子昌, 刘元广, 张睿, 高向友. 缺口导流期碾压混凝土坝智能通水温控[J]. 清华大学学报(自然科学版), 2023, 63(7): 1060-1067.
[8] 祁宁春, 聂强, 来记桃, 陈永灿, 李永龙. 水电站多元场景水下智能巡检关键技术与实践[J]. 清华大学学报(自然科学版), 2023, 63(7): 1124-1134.
[9] 林海涛, 王皓冉, 李永龙, 陈永灿, 张华. 水下非均匀光照场景下的混凝土图像增强方法[J]. 清华大学学报(自然科学版), 2023, 63(7): 1144-1152.
[10] 徐小蓉, 何涛洪, 雷峥琦, 张全意, 黎聪, 金峰. 超长坝段堆石混凝土重力坝蓄水运行安全评价[J]. 清华大学学报(自然科学版), 2022, 62(9): 1375-1387.
[11] 余舜尧, 徐小蓉, 邱流潮, 金峰. 堆石混凝土浇筑前后的非均质温度分布试验研究[J]. 清华大学学报(自然科学版), 2022, 62(9): 1388-1400.
[12] 程恒, 周秋景, 娄诗建, 张国新, 刘毅, 雷峥琦. 石坝河水库堆石混凝土重力坝施工期工作性态仿真[J]. 清华大学学报(自然科学版), 2022, 62(9): 1408-1416.
[13] 吕淼, 安雪晖, 李鹏飞, 张京斌, 白皓. 自密实混凝土全过程智能生产研究进展[J]. 清华大学学报(自然科学版), 2022, 62(8): 1270-1280.
[14] 王辉, 马嘉均, 周虎, 何世钦, 金峰. 堆石混凝土单轴受压力学性能[J]. 清华大学学报(自然科学版), 2022, 62(2): 339-346.
[15] 樊启祥, 段亚辉, 王业震, 王孝海, 杨思盟, 康旭升. 混凝土保湿养护智能闭环控制研究[J]. 清华大学学报(自然科学版), 2021, 61(7): 671-680.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn