Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2023, Vol. 63 Issue (7): 1124-1134    DOI: 10.16511/j.cnki.qhdxxb.2023.26.016
  论文 本期目录 | 过刊浏览 | 高级检索 |
水电站多元场景水下智能巡检关键技术与实践
祁宁春1, 聂强1, 来记桃1, 陈永灿2, 李永龙3
1. 雅砻江流域水电开发有限公司, 成都 610051;
2. 清华大学, 水沙科学与水利水电工程国家重点实验室, 北京 100084;
3. 清华四川能源互联网研究院, 成都 610213
Key technology and practice of intelligent underwater inspection in multiple scenarios of hydropower station
QI Ningchun1, NIE Qiang1, LAI Jitao1, CHEN Yongcan2, LI Yonglong3
1. Yalong River Hydropower Development Co., Ltd., Chengdu 610051, China;
2. State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China;
3. Sichuan Energy Internet Research Institute, Tsinghua University, Chengdu 610213, China
全文: PDF(15396 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 针对运行期水电站多元场景下复杂结构与环境水下检查的重大难题和迫切需求,以雅砻江流域梯级电站为典型场景,对比分析水电站水下检测环境与海洋开放水域场景的差异,该文提出了复杂场景下水工建筑物水下智能巡检实施的技术路径,构建了水下检测机器人系统装备、超长距离水下供电与通信、水下精确导航与定位、大断面快速精细检测、巡检过程实时监控和缺陷信息智能分析等关键技术体系,进而形成水工建筑物多元应用场景的系统解决方案。该文重点在典型水工隧洞结构和高山峡谷区半开放水域开展多元化应用实践,实现了水工建筑物智能巡检与安全管控,提升了流域梯级电站电力生产经济效益,大幅降低了传统检测成本。该研究成果与实践经验可促进水电枢纽水下智能巡检技术发展,具有重要的行业推广意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
祁宁春
聂强
来记桃
陈永灿
李永龙
关键词 水电站水工建筑物多元场景水下机器人智能巡检    
Abstract:[Objective]Underwater building safety inspection is a vital tool for ensuring reservoir dam operation safety of hydropower stations. Due to the high expense of traditional drainage inspections and the high safety risk of divers performing underwater inspections for areas that cannot be drained, underwater detection technology provides a new solution to underwater building safety inspection. [Methods] Using the Yalong River basin step operation hydropower stations as a typical scenario, the target water environment and structural boundary conditions were analyzed; combined with open water underwater inspection experience and technical differences, underwater robot inspection equipment and essential technology systems under various scenarios of hydropower stations were constructed. Through robot system integration and testing, a small-sized, powerful, multi-sensor fusion cable remote control submersible was developed for tunnel-like structures with lengthy cavern lines. A high-strength, zero buoyancy photoelectric composite umbilical cable with a small diameter was designed, and remote power supply and fiber optic real-time communication were carried out through high-frequency medium voltage transmission technology. The real-time monitoring system for underwater robot movement based on the virtual exercise platform was built, and the robot was directed to return autonomously by an adaptive control algorithm in the case of communication and power supply failure. The combined inertial navigation-based positioning technology was investigated, and the position information, such as structural seams and feature markings detected by sonar and camera, was used to calibrate the inertial guidance positioning information. A high-frequency three-dimensional real-time sonar system with 360° mobility, continuous scanning, and real-time generation of a three-dimensional point cloud model was jointly developed, which improved precise positioning capability and detection efficiency for large cross-sections and long-distance closed structures. The research offers a defect identification technology based on dynamic feature distillation to intelligently identify the inspection images and uses the joint analysis method of inspection information and a 3D digital model to conduct intelligent spatiotemporal correlation analysis of defect information. Intelligent unmanned vessel systems and RTK-GNSS combined positioning technology are introduced for underwater inspection in semi-open waters in high mountain canyon areas. A joint inspection scheme of multibeam sonar and underwater robots is proposed to make full use of the advantages of fast and high-density scanning of multibeam sonar and fine inspection of robots to improve inspection efficiency. [Results] The robot system successfully passed through the access channel with only 2.1 m in diameter, the diversion tunnel with 12.0 m in diameter and 2.30 km in length, and the pressure pipeline with a 250.0 m vertical drop in the practice of normalized underwater inspection of multi-water scenes at Yalong River Basin Hydropower Station. The flaw detection accuracy reached the millimeter level, the plane positioning precision reached 10 cm, and the axial positioning accuracy was better than 1‰ of the traveled distance. The intelligent recognition rate of common defects in concrete structures, such as broken or exposed bars and cracks, reached 96.5%. The intelligent unmanned vessel successfully inspected various types of semi-open waters, such as tailwater channels of hydropower stations with a flow speed of 2 m/s and turbulent flows, obtaining three-dimensional topographic maps of underwater environments and identifying the distribution characteristics of underwater defects with a horizontal positioning accuracy better than ±8 mm+1 ppm and a vertical orientation better than ±15 mm+1 ppm. [Conclusions] The underwater intelligent inspection system features a high degree of innovation and integration, a large number of practical cases, safe and reliable inspection, and accurate and intuitive results. The system has effectively guided the safe operation and maintenance of underwater structures at the Yalong River Basin Hydropower Station and significantly reduced the cost of traditional inspection, which has important significance for industry promotion.
Key wordshydropower station    hydraulic structures    multiple senarios    underwater robots    intelligent inspection
收稿日期: 2022-11-28      出版日期: 2023-06-27
基金资助:国家重点研发计划项目(2019YFB1310505)
通讯作者: 陈永灿,教授。E-mail:chenyc@tsinghua.edu.cn     E-mail: chenyc@tsinghua.edu.cn
作者简介: 祁宁春(1964—),男,正高级工程师。
引用本文:   
祁宁春, 聂强, 来记桃, 陈永灿, 李永龙. 水电站多元场景水下智能巡检关键技术与实践[J]. 清华大学学报(自然科学版), 2023, 63(7): 1124-1134.
QI Ningchun, NIE Qiang, LAI Jitao, CHEN Yongcan, LI Yonglong. Key technology and practice of intelligent underwater inspection in multiple scenarios of hydropower station. Journal of Tsinghua University(Science and Technology), 2023, 63(7): 1124-1134.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2023.26.016  或          http://jst.tsinghuajournals.com/CN/Y2023/V63/I7/1124
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] 中华人民共和国水利部. 2020年全国水利发展统计公报[M].北京:中国水利水电出版社, 2021. Ministry of Water Resources, People's Republic of China. 2020 statistic bulletin on China water activities[M]. Beijing:China Water Resources and Hydropower Press, 2021.(in Chinese)
[2] 来记桃,聂强,李乾德,等.水下检测技术在雅砻江流域电站运维中的应用[J].水电能源科学, 2021, 39(11):207-210, 144. LAI J T, NIE Q, LI Q D, et al. Application of underwater unmanned detection technology in operation and maintenance of hydropower stations in Yalong River basin[J]. Water Resources and Power, 2021, 39(11):207-210, 144.(in Chinese)
[3] CLARKE R. Inspection of the tunnel at the Kemano project[J]. American Scientist, 2013, 32(2):42-44.
[4] KALWA J. SeaCat AUV inspects water supply tunnel[J]. Sea Technology, 2012, 53(8):43-44.
[5] 王秘学,谭界雄,田金章,等.以ROV为载体的水库大坝水下检测系统选型研究[J].人民长江, 2015, 46(22):95-98, 102. WANG M X, TAN J X, TIAN J Z, et al. Study on selection of underwater detection equipment of reservoirs and dams using ROV as carrier[J]. Yangtze River, 2015, 46(22):95-98, 102.(in Chinese)
[6] 王祥,宋子龙. ROV水下探测系统在水利工程中的应用初探[J].人民长江, 2016, 47(2):101-105. WANG X, SONG Z L. Preliminary analysis on application of ROV underwater detect system in water conservancy project[J]. Yangtze River, 2016, 47(2):101-105.(in Chinese)
[7] 李永龙,王皓冉,张华.水下机器人在水利水电工程检测中的应用现状及发展趋势[J].中国水利水电科学研究院学报, 2018, 16(6):586-590. LI Y L, WANG H R, ZHANG H. Application status and development trend of underwater robot in water and hydropower engineering detection[J]. Journal of China Institute of Water Resources and Hydropower Research, 2018, 16(6):586-590.(in Chinese)
[8] 张柏楠,韩勃,李宁博,等.长距离水工隧洞运营期无人检测技术及病害识别方法研究进展[J].应用基础与工程科学学报, 2021, 29(5):1245-1264. ZHANG B N, HANG B, LI N B, et al. Research progress on unmanned inspection technology and disease identification method of long-distance hydraulic tunnels in operation period[J]. Journal of Basic Science and Engineering, 2021, 29(5):1245-1264.(in Chinese)
[9] 黄泽孝,孙红亮. ROV在深埋长隧洞水下检查中的应用[J].长江科学院院报, 2019, 36(7):170-174. HUANG Z X, SUN H L. An application of remotely operated vehicle to underwater inspection of deep-buried long tunnel[J]. Journal of Yangtze River Scientific Research Institute, 2019, 36(7):170-174.(in Chinese)
[10] WANG H R, WANG S, FENG C C, et al. Diversion tunnel defects inspection and identification using an automated robotic system[C]//2019 Chinese Automation Congress. Hangzhou, China:IEEE, 2019:5863-5868.
[11] 冯永祥,来记桃.高水头多弯段压力管道水下检查技术研究与应用[J].人民长江, 2017, 48(14):82-85. FENG Y X, LAI J T. Research and application of underwater inspection technology for pressure pipeline with multi-bend segment in high-head hydropower station[J]. Yangtze River, 2017, 48(14):82-85.(in Chinese)
[12] 来记桃.大直径长引水隧洞水下全覆盖无人检测技术研究[J].人民长江, 2020, 51(5):228-232. LAI J T. Research and application of underwater full coverage unmanned detection technology for large diameter and long diversion tunnel[J]. Yangtze River, 2020, 51(5):228-232.(in Chinese)
[13] 赵俊波,葛锡云,冯雪磊,等.水下SINS/DVL组合导航技术综述[J].水下无人系统学报, 2018, 26(1):2-9. ZHAO J B, GE X Y, FENG X L, et al. A review of underwater SINS/DVL integrated navigation technology[J]. Journal of Unmanned Undersea Systems, 2018, 26(1):2-9.(in Chinese)
[14] XU X S, LI P J, LIU J J. A fault-tolerant filtering algorithm for SINS/DVL/MCP integrated navigation system[J]. Mathematical Problems in Engineering, 2015, 2015:581909.
[15] 黄继爽,张华,李永龙,等.基于动态特征蒸馏的水工隧洞缺陷识别方法[J].计算机应用, 2021, 41(8):2358-2365. HUANG J S, ZHANG H, LI Y L, et al. Hydraulic tunnel defect recognition method based on dynamic feature distillation[J]. Journal of Computer Applications, 2021, 41(8):2358-2365.(in Chinese)
[1] 李佳龙, 陈永灿, 李永龙, 王皓冉, 谢辉. 泥沙淤积环境下清淤置换模块设计及检测效率分析[J]. 清华大学学报(自然科学版), 2023, 63(7): 1104-1112.
[2] 陈永灿, 陈嘉杰, 王皓冉, 巩宇, 冯跃, 刘昭伟, 祁宁春, 刘梅, 李永龙, 谢辉. 大直径长引水隧洞水下检测机器人系统关键技术[J]. 清华大学学报(自然科学版), 2023, 63(7): 1015-1031.
[3] 徐鹏飞, 陈梅雅, 开艳, 王子鹏, 李新宇, 万刚, 王延杰. 大型水电站坝体检测水下机器人研究进展[J]. 清华大学学报(自然科学版), 2023, 63(7): 1032-1040.
[4] 李明, 林鹏, 李子昌, 刘元广, 张睿, 高向友. 缺口导流期碾压混凝土坝智能通水温控[J]. 清华大学学报(自然科学版), 2023, 63(7): 1060-1067.
[5] 王皓冉, 谢辉, 陈永灿, 刘康, 李正文, 李永龙. 消力池底板混凝土磨蚀智能检测与数值仿真[J]. 清华大学学报(自然科学版), 2023, 63(7): 1095-1103.
[6] 谭尧升, 樊启祥, 汪志林, 陈文夫, 郭增光, 林恩德, 林鹏, 周天刚, 周孟夏, 刘春风, 龚攀, 裴磊. 白鹤滩特高拱坝智能建造技术与应用实践[J]. 清华大学学报(自然科学版), 2021, 61(7): 694-704.
[7] 樊启祥, 林鹏, 蒋树, 魏鹏程, 李果. 金沙江下游大型水电站岩石力学与工程综述[J]. 清华大学学报(自然科学版), 2020, 60(7): 537-556.
[8] 罗贯军, 王克祥, 郭增光, 谭尧升, 阿旺加措. 复杂河床坝基岩体盖重固结灌浆关键技术[J]. 清华大学学报(自然科学版), 2020, 60(7): 575-581.
[9] 黄伟, 魏鹏程. 特高拱坝全坝基无盖重固结灌浆关键技术[J]. 清华大学学报(自然科学版), 2020, 60(7): 582-588.
[10] 张明, 郑双凌, 马吉明, 齐文彪. 简单管路中水击的类型偏误分析及解析计算[J]. 清华大学学报(自然科学版), 2017, 57(9): 986-992.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn