Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2023, Vol. 63 Issue (7): 1144-1152    DOI: 10.16511/j.cnki.qhdxxb.2023.26.011
  论文 本期目录 | 过刊浏览 | 高级检索 |
水下非均匀光照场景下的混凝土图像增强方法
林海涛1, 王皓冉2, 李永龙2, 陈永灿2,4, 张华1,3
1. 西南科技大学 信息工程学院, 绵阳 621010;
2. 清华四川能源互联网研究院, 成都 610213;
3. 四川天府新区创新研究院, 成都 610000;
4. 西南石油大学 土木工程与测绘学院, 成都 610500
Concrete image enhancement method for underwater uneven illumination scenes
LIN Haitao1, WANG Haoran2, LI Yonglong2, CHEN Yongcan2,4, ZHANG Hua1,3
1. College of Information Engineering, Southwest University of Science and Technology, Mianyang 621010, China;
2. Sichuan Energy Internet Research Institute, Tsinghua University, Chengdu 610213, China;
3. Sichuan Tianfu New Area Innovation Research Institute, Chengdu 610000, China;
4. School of Civil Engineering and Geomatics, Southwest Petroleum University, Chengdu 610500, China
全文: PDF(14716 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 检测水下基础设施混凝土表观缺陷是保障水下基础设施安全稳定运行的重要措施。使用遥控水下机器人(remote operated vehicle,ROV)采集混凝土表观图像是当前水下检测最高效的方式,然而ROV采集到的混凝土图像存在光照不均、色彩失衡、对比度差和边缘信息弱等问题。该文针对水下混凝土图像质量不佳的问题,提出了水下非均匀光照场景下的混凝土图像增强方法。首先采用图像修复技术(image inpainting technique,IIT)对图像局部高光区域进行修复;然后在暗通道图像增强方法的基础上引入图像对比度感知调节方法,选取不同窗口尺寸,在每个局部窗口区域中实现图像增强;最后采用自然图像质量评估、基于感知的图像质量评估、无参照物图像质量评估和水下彩色图像质量评估4个指标对增强后的图像进行评估。实验结果表明:该文提出的方法在多个对比指标中优于现有水下图像增强方法,能有效提升水下图像质量。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
林海涛
王皓冉
李永龙
陈永灿
张华
关键词 混凝土图像增强水下测量图像畸变矫正对比度引导    
Abstract:[Objective] Identifying concrete surface defects in underwater infrastructure is crucial to ensure safe and stable operation. At present, using ROV to gather concrete surface images is the most effective measure for underwater image detection. However, the concrete images obtained by ROV have some phenomena, such as uneven illumination, color imbalance, poor contrast, and weak edge information. In this study, the issue of underwater concrete photos with poor image quality in nonuniform lighting scenarios is investigated, and a method for underwater concrete image enhancement is suggested, which provides efficient data support for the detection and analysis of concrete surface defects in underwater infrastructure. [Methods] The local highlight issue caused by the fill light spots in underwater images is processed based on image repair. First, the image is thresholded, and the highlighted pixel area of the image is retained. Second, using the hough circle detection method, the annular fill light spot area on the image is retrieved. The resulting annular fill light spot image is then used as the Mask image of the original image for restoration. Finally, the local highlighted area caused by the fill light spot is repaired by filling the adjacent pixel area. An improved dark channel prior (DCP) technique is used to enhance the image to address the issue of poor image quality brought by the undersea environment’s uneven illumination. However, the single window size will have the following three problems: (1) A small size window area will lead to the oversaturation of local areas in the enhanced image. (2) A large window size can better eliminate the haze of the image but may produce halos. (3) A single-sized window is difficult to adapt to different pixel size images. Therefore, the selection area of the dark channel window size is expanded upon in this work using the contrast perception method. Image enhancement is done in each local window region by computing the contrast of seven neighborhood windows of one pixel and choosing the relevant dark channel window size following the contrast of the windows. [Results] To confirm the effectiveness of the algorithm, the image enhancement method suggested in the manuscript was compared with low-light underwater images using local contrast and multiscale fusion (L2UWE), relative global histogram stretching (GRHS), underwater light attenuation prior (ULAP), image blurriness and light absorption (IBLA), dark channel prior (DCP), and contrast limited adaptive histogram equalization (CLAHE). Simultaneously, four metrics, natural image quality evaluator (NIQE), perception-based image quality evaluator (PIQE), blind/reference less image spatial quality evaluator (BRISQUE), and underwater color image quality evaluation (UCIQE), were used to assess the enhanced images. Experiment results showed that the PIQE, BRISQUE, and UCIQE of the proposed method obtained scores of 25.75±3.93, 29.39±1.80, and 1.04±0.01, respectively, which performed best. [Conclusions] The proposed image enhancement method achieves balanced enhancement of images in terms of color, contrast, and brightness, and the algorithm in this paper can successfully enhance the quality of underwater images. Our study will aid in measuring underwater concrete fault levels.
Key wordsconcrete image enhancement    underwater measurements    image distortion correction    contrast guide
收稿日期: 2022-10-25      出版日期: 2023-06-27
基金资助:国家自然科学基金资助项目(52009064,U21A20157);四川省科技厅项目(2022JDRC0073,2022YFSY0011,2022YFQ0080)
通讯作者: 王皓冉,正高级工程师,E-mail:thuwhr@163.com     E-mail: thuwhr@163.com
作者简介: 林海涛(1993—),男,博士研究生。
引用本文:   
林海涛, 王皓冉, 李永龙, 陈永灿, 张华. 水下非均匀光照场景下的混凝土图像增强方法[J]. 清华大学学报(自然科学版), 2023, 63(7): 1144-1152.
LIN Haitao, WANG Haoran, LI Yonglong, CHEN Yongcan, ZHANG Hua. Concrete image enhancement method for underwater uneven illumination scenes. Journal of Tsinghua University(Science and Technology), 2023, 63(7): 1144-1152.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2023.26.011  或          http://jst.tsinghuajournals.com/CN/Y2023/V63/I7/1144
  
  
  
  
  
  
  
  
  
  
  
  
[1] 李庆斌,马睿,胡昱,等.大坝智能建造研究进展与发展趋势[J].清华大学学报(自然科学版), 2022, 62(8):1252-1269. LI Q B, MA R, HU Y, et al. A review of intelligent dam construction techniques[J]. Journal of Tsinghua University (Science and Technology), 2022, 62(8):1252-1269.(in Chinese)
[2] AKKAYNAK D, TREIBITZ T. Sea-thru:A method for removing water from underwater images[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, USA:IEEE, 2019:1682-1691.
[3] ZHENG Y J, YU J Y, KANG S B, et al. Single-image vignetting correction using radial gradient symmetry[C]//Proceedings of 2008 IEEE Computer Vision and Pattern Recognition. Anchorage, USA:IEEE, 2008:1-8.
[4] LI Y, TAN R T, BROWN M S. Nighttime haze removal with glow and multiple light colors[C]//Proceedings of 2015 IEEE International Conference on Computer Vision (ICCV). Santiago, Chile:IEEE, 2015:226-234.
[5] ANCUTI C, ANCUTI C O, VLEESCHOUWER C D, et al. Day and night-time dehazing by local airlight estimation[J]. IEEE Transactions on Image Processing, 2020, 29:6264-6275.
[6] DONG X, WANG G, PANG Y, et al. Fast efficient algorithm for enhancement of low lighting video[C]//Proceedings of 2011 International Conference on Multimedia and Expo. Barcelona, Spain:IEEE, 2011:1-6.
[7] HE K M, SUN J, TANG X O. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12):2341-2353.
[8] ANCUTI C O, ANCUTI C, VLEESCHOUWER C D, et al. Color balance and fusion for underwater image enhancement[J]. IEEE Transactions on Image Processing, 2018, 27(1):379-393.
[9] 胡振宇,陈琦,朱大奇.基于颜色平衡和多尺度融合的水下图像增强[J].光学精密工程, 2022, 30(17):2133-2146. HU Z Y, CHEN Q, ZHU D Q. Underwater image enhancement based on color balance and multi-scale fusion[J]. Opticsand Precision Engineering, 2022, 30(17):2133-2146.(in Chinese)
[10] MARQUES T P, ALBU A B. L2UWE:A framework for the efficient enhancement of low-light underwater images using local contrast and multi-scale fusion[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Seattle, USA:IEEE, 2020:2286-2295.
[11] MARQUES T P, ALBU A B, HOEBERECHTS M. A contrast-guided approach for the enhancement of low-lighting underwater images[J]. Journal of Imaging, 2019, 5(10):79.
[12] 曹风云,赵凯,王筱薇倩,等.自适应水下彩色图像增强算法[J].电子测量与仪器学报, 2016, 30(5):772-778. CAO F Y, ZHAO K, WANG X W Q, et al. An adaptive underwater image enhancement algorithm[J]. Journal of Electronic Measurement and Instrumentation, 2016, 30(5):772-778.(in Chinese)
[13] QING C M, HUANG W Y, ZHU S Q, et al. Underwater image enhancement with an adaptive dehazing framework[C]//Proceedings of 2015 IEEE International Conference on Digital Signal Processing (DSP). Singapore:IEEE, 2015:338-342.
[14] 黄冬梅,王龑,宋巍,等.不同颜色模型下自适应直方图拉伸的水下图像增强[J].中国图像图形学报, 2018, 23(5):640-651. HUANG D M, WANG Y, SONG W, et al. Underwater image enhancement method using adaptive histogram stretching in different color models[J]. Journal of Image and Graphics, 2018, 23(5):640-651.(in Chinese)
[15] HUANG D M, WANG Y, SONG W, et al. Shallow-water image enhancement using relative global histogram stretching based on adaptive parameter acquisition[C]//Proceedings of the 24th International Conference on Multimedia Modeling. Bangkok, Thailand:Springer, 2018:453-465.
[16] 刘国,吕群波,刘扬阳.基于自适应暗原色的单幅图像去雾算法[J].光子学报, 2018, 47(2):0210001. LIU G, Lü Q B, LIU Y Y. Single image dehazing algorithm based on adaptive dark channel prior[J]. Acta Photonica Sinica, 2018, 47(2):0210001.(in Chinese)
[17] TELEA A. An image inpainting technique based on the fast marching method[J]. Journal of Graphics Tools, 2004, 9(1):23-34.
[18] ZHANG Z Y. Flexible camera calibration by viewing a plane from unknown orientations[C]//Proceedings of the Seventh IEEE International Conference on Computer Vision. Kerkyra, Greece:IEEE, 1999:666-673.
[19] LIN H T, ZHANG H, LI Y L, et al. 3D point cloud capture method for underwater structures in turbid environment[J]. Measurement Science and Technology, 2021, 32(2):025106.
[20] SONG W, WANG Y, HUANG D M, et al. A rapid scene depth estimation model based on underwater light attenuation prior for underwater image restoration[C]//Proceedings of the 19th Pacific Rim Conference on Multimedia. Hefei, China:Springer, 2018:678-688.
[21] PENG Y T, COSMAN P C. Underwater image restoration based on image blurriness and light absorption[J]. IEEE Transactions on Image Processing, 2017, 26(4):1579-1594.
[22] PIZER S M, JOHNSTON R E, ERICKSEN J P, et al. Contrast-limited adaptive histogram equalization:Speed and effectiveness[C]//Proceedings of the First Conference on Visualization in Biomedical Computing. Atlanta, USA:IEEE, 1990:337-345.
[23] MITTAL A, SOUNDARARAJAN R, BOVIK A C. Making a "completely blind" image quality analyzer[J]. IEEE Signal Processing Letters, 2013, 20(3):209-212.
[24] VENKATANATH N, PRANEETH D, MARUTHI C, et al. Blind image quality evaluation using perception based features[C]//Twenty First National Conference on Communications (NCC). Mumbai, India:IEEE, 2015:1-6.
[25] MITTAL A, MOORTHY A, BOVIK A. No-reference image quality assessment in the spatial domain[J]. IEEE Transactions on Image Processing, 2012, 21(12):4695-4708.
[26] YANG M, SOWMYA A. An underwater color image quality evaluation metric[J]. IEEE Transactions on Image Processing, 2015. 24(12):6062-6071.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn