Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2024, Vol. 64 Issue (2): 198-204    DOI: 10.16511/j.cnki.qhdxxb.2023.22.047
  建设管理 本期目录 | 过刊浏览 | 高级检索 |
塔吊与工人空间交互下危险场景自动检测
张知田1, 王园园2, 罗柱邦1, 郭子扬1, 郭红领1
1. 清华大学 建设管理系, 北京 100084;
2. 中交第三公路工程局有限公司 建筑工程分公司, 北京 100020
Automatic detection of hazardous scenarios during spatial interaction between tower cranes and workers
ZHANG Zhitian1, WANG Yuanyuan2, LUO Zhub1, GUO Ziyang1, GUO Hongling1
1. Department of Construction Management, Tsinghua University, Beijing 100084, China;
2. Construction Engineering Branch, The Third Highway Engineering Co., Ltd., Beijing 100020, China
全文: PDF(8549 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 塔吊作业具有持续时间长、范围大以及与工人空间交互复杂的特点,导致塔吊事故频发且往往损失重大。为了提升塔吊运行相关危险场景检测的及时性和有效性,该文基于信息化手段,提出了塔吊运行过程中危险场景的自动检测方法。该方法基于建筑信息模型(BIM)、传感器和计算机视觉等技术,通过获取塔吊运行状态与工人作业状态,分析两者之间的空间交互关系,在判别规则的基础上实现了危险场景自动检测。案例应用表明,该自动检测方法是可行的和有效的。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张知田
王园园
罗柱邦
郭子扬
郭红领
关键词 施工安全塔吊工人危险场景自动检测    
Abstract:[Objective] Tower crane operations are characterized by long durations, extensive moving scopes, heavy loads, and complex spatial interactions with workers. These factors often contribute to construction accidents. Furthermore, construction workers standing under crane hooks and their lifting objects during the lifting process pose high safety risks, often encountering accidents such as collisions and object falling. Information technology plays a crucial role in enhancing tower crane monitoring and reducing workers' safety risks. Although existing studies on tower crane monitoring have made considerable advancements, they primarily focus on the operating state of cranes and overlook safety issues arising from interactions between cranes and workers. This study aims to employ the schedule information extracted from building information modeling (BIM) and computer vision and sensing technologies to propose an automatic hazard detection method for detecting dangerous scenarios during the lifting process in tower cranes. [Methods] This study develops an automatic detection framework for identifying hazardous scenarios involving spatial interaction between tower cranes and workers. This framework comprises four components. (1) Equipment installation and network environment establishment:cameras are installed at elevated positions to monitor the spatial locations of workers under the operating plane of a tower crane in real time. Furthermore, various sensors and cameras are fixed beneath the crane's trolley and cab to collect data regarding its operating status. A local area network is set up on the site to facilitate instantaneous data transmission. (2) Collection of tower crane operating data:the exact spatial location of the crane's hook is calculated using arm tracking and spatial trigonometric relations to determine its operating status. (3) Collection of workers' operational status data:advanced image recognition techniques are used to identify workers' positions, which are then converted into three-dimensional spatial coordinates through coordinate transformation. (4) Spatial relationship analysis and identification:precise spatial mapping of the tower crane's operating status and workers' positions is obtained using a unified BIM, followed by automatic detection according to predefined hazard assessment rules. [Results] The effectiveness and feasibility of the proposed method are validated by implanting it during a one-month real construction project. The analysis of data collected for 15 days reveals that the number of hazardous scenarios fluctuates considerably, peaking 523 times and plunging 35 times. These fluctuations correlate strongly with the number of workers on site, verifying the reliability of the proposed method and highlighting the need for intelligent hazardous scenario detection. Moreover, the results show that construction workers generally lack adequate awareness of the safety implications of tower crane trajectories. [Conclusions] This study successfully integrates BIM, sensing, and computer vision technologies to develop an automatic hazard detection method that focuses on the spatial interaction between tower cranes and workers. The proposed method enhances the timeliness and accuracy of hazard detection and provides innovative perspectives and technical support for construction site safety management. However, this study has certain limitations, such as data interferences caused by minor vibrations during tower crane operations to be further mitigated using noise reduction techniques in future research.
Key wordsconstruction safety    tower crane    worker    hazardous scene    automatic detection
收稿日期: 2023-08-01      出版日期: 2023-12-28
ZTFLH:  TU714  
基金资助:国家自然科学基金面上项目(52278310);清华大学“水木学者”计划
通讯作者: 郭红领,副教授,E-mail:hlguo@tsinghua.edu.cn     E-mail: hlguo@tsinghua.edu.cn
作者简介: 张知田(1996-),女,助理研究员。
引用本文:   
张知田, 王园园, 罗柱邦, 郭子扬, 郭红领. 塔吊与工人空间交互下危险场景自动检测[J]. 清华大学学报(自然科学版), 2024, 64(2): 198-204.
ZHANG Zhitian, WANG Yuanyuan, LUO Zhub, GUO Ziyang, GUO Hongling. Automatic detection of hazardous scenarios during spatial interaction between tower cranes and workers. Journal of Tsinghua University(Science and Technology), 2024, 64(2): 198-204.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2023.22.047  或          http://jst.tsinghuajournals.com/CN/Y2024/V64/I2/198
  
  
  
  
  
  
  
  
  
  
  
  
[1] 李春雷. 建筑塔吊监控系统远程终端的开发[D]. 成都:电子科技大学, 2010. LI C L. The development of remote terminal of tower crane monitoring system [D]. Chengdu:University of Electronic Science and Technology of China, 2010. (in Chinese)
[2] 唐凯, 陈陆, 张洲境, 等. 我国建筑施工行业生产安全事故统计分析及对策[J]. 建筑安全, 2020, 35(9):40-43. TANG K, CHEN L, ZHANG Z J, et al. Statistical analysis and countermeasures of production safety accidents in construction industry in China [J]. Construction Safety, 2020, 35(9):40-43. (in Chinese)
[3] 黄莺, 瑚珊, 姚思梦. 施工塔吊安全管理的系统动力学分析[J]. 安全与环境学报, 2020, 20(6):2060-2068. HUANG Y, HU S, YAO S M. System dynamics analysis and safety risk of building tower crane [J]. Journal of Safety and Environment, 2020, 20(6):2060-2068. (in Chinese)
[4] Bureau of Labor Statistics, USA. Crane-related work deaths trended down from 1992 to 2017[R/OL]. (2019-06-26) [2023-05-01]. https://www.heavyequipmentforums.com/threads/crane-related-work-deaths-trended-down-from-1992-to-2017.77801/.
[5] 周炜. 建筑工程施工塔吊安全风险分析与监控研究[D]. 武汉:华中科技大学, 2019. ZHOU W. Risk analysis and monitoring technologies of tower crane safety in construction engineering [D]. Wuhan:Huazhong University of Science and Technology, 2019. (in Chinese)
[6] 胡振中, 张建平, 张新. 基于四维时空模型的施工现场物理碰撞检测[J]. 清华大学学报(自然科学版), 2010, 50(6):820-825. HU Z Z, ZHANG J P, ZHANG X. Construction collision detection for site entities based on 4-D space-time model [J]. Journal of Tsinghua University (Science & Technology), 2010, 50(6):820-825. (in Chinese)
[7] 李英攀, 史明亮, 刘名强, 等. 基于Cloud-BIM和UWB的施工现场智能安全系统研究[J]. 中国安全生产科学技术, 2018, 14(9):151-157. LI Y P, SHI M L, LIU M Q, et al. Research on intelligent safety system of construction site based on Cloud-BIM and UWB [J]. Journal of Safety Science and Technology, 2018, 14(9):151-157. (in Chinese)
[8] 周进. 塔吊安全监控保护系统及关键算法研究[D]. 哈尔滨:哈尔滨工业大学, 2010. ZHOU J. Monitoring and protection system for safety of tower crane and its key technologies [D]. Harbin:Harbin Institute of Technology, 2010. (in Chinese)
[9] GHEISARI M, ESMAEILI B. Applications and requirements of unmanned aerial systems (UASs) for construction safety [J]. Safety Science, 2019, 118:230-240.
[10] ZHONG D X, LV H Q, HAN J Q, et al. A practical application combining wireless sensor networks and internet of things:Safety management system for tower crane groups [J]. Sensors, 2014, 14(8):13794-13814.
[11] WU H T, ZHONG B T, LI H, et al. On-site safety inspection of tower cranes:A blockchain-enabled conceptual framework [J]. Safety Science, 2022, 153:105815.
[12] TEIZER J, VENUGOPAL M, WALIA A. Ultrawideband for automated real-time three-dimensional location sensing for workforce, equipment, and material positioning and tracking [J]. Transportation Research Record:Journal of the Transportation Research Board, 2008, 2081(1):56-64.
[13] GUO H L, ZHANG Z T, YU R, et al. Action recognition based on 3D Skeleton and LSTM for the monitoring of construction workers' safety harness usage [J]. Journal of Construction Engineering and Management, 2023, 149(4):04023015.
[14] 孙宏军, 赵作霖, 徐冠群. 塔式起重机机器视觉监控系统设计[J]. 传感器与微系统, 2016, 35(8):70-73. SUN H J, ZHAO Z L, XU G Q. Design of computer vision surveillance system for tower cranes [J]. Transducer and Microsystem Technologies, 2016, 35(8):70-73. (in Chinese)
[15] 张锐. 基于机器视觉的塔式起重机控制策略研究[D]. 合肥:合肥工业大学, 2019. ZHANG R. Study on control strategy of tower crane based on machine vision [D]. Hefei:Hefei University of Technology, 2019. (in Chinese)
[16] YANG Z, YUAN Y B, ZHANG M Y, et al. Safety distance identification for crane drivers based on Mask R-CNN [J]. Sensors, 2019, 19(12):2789.
[17] 段锐, 邓晖, 邓逸川. ICT支持的塔吊安全管理框架:回顾与展望[J]. 图学学报, 2022, 43(1):11-20. DUAN R, DENG H, DENG Y C. Information communications technology assisted tower crane safety management:Review and prospect [J]. Journal of Graphics, 2022, 43(1):11-20. (in Chinese)
[1] 曹新颖, 郑德城, 秦培成, 李小冬. 建筑工业噪声对工人学习效率的影响——基于脑电的研究[J]. 清华大学学报(自然科学版), 2024, 64(2): 189-197.
[2] 付汉良, 谭玉冰, 夏中境, 郭晓彤. 专家危险识别轨迹对建筑工人安全教育的影响——来自眼动实验的证据[J]. 清华大学学报(自然科学版), 2024, 64(2): 205-213.
[3] 古博韬, 曹思涵, 王尧, 黄玥诚, 方东平. 施工协同工作的不安全行为类型及特征[J]. 清华大学学报(自然科学版), 2023, 63(2): 160-168.
[4] 管仲尧, 项天, 方东平, 郭红领. 改进的建筑工人疲劳与不安全行为实验测量方法[J]. 清华大学学报(自然科学版), 2021, 61(10): 1186-1194.
[5] 郭红领, 张知田, 郁润. 基于危险系数的施工工人不安全行为评估[J]. 清华大学学报(自然科学版), 2019, 59(11): 873-879.
[6] 郭红领, 张伟胜, 刘文平. 基于设计-施工安全(DFCS)的安全规则[J]. 清华大学学报(自然科学版), 2015, 55(6): 633-639.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn