Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2024, Vol. 64 Issue (3): 454-470    DOI: 10.16511/j.cnki.qhdxxb.2023.26.064
  生物摩擦学前沿 本期目录 | 过刊浏览 | 高级检索 |
滑液组分对“软-软”配副关节材料摩擦学行为的影响
岑佳佳1, 张德坤1, 陈琴2, 张欣悦1, 冯存傲1, 冯海燕1, 陈凯1
1. 中国矿业大学 材料与物理学院, 徐州 221116;
2. 中国矿业大学 化工学院, 徐州 221116
The influence of synovial fluid components on the tribological behavior of “soft-soft” joint pair materials
CEN Jiajia1, ZHANG Dekun1, CHEN Qin2, ZHANG Xinyue1, FENG Cunao1, FENG Haiyan1, CHEN Kai1
1. School of Materials and Physics, China University of Mining and Technology, Xuzhou 221116, China;
2. School of Chemical Engineering, China University of Mining and Technology, Xuzhou 221116, China
全文: PDF(35470 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 人体内关节滑液中各成分浓度的变化对人工关节滑动配副的摩擦学行为具有重要影响。该文基于人工关节置换后关节滑液的各组分浓度,以聚醚醚酮(polyether-ether-ketone,PEEK)和高交联聚乙烯(highly crosslinked polyethylene,XLPE)组成的“软-软”关节配副为研究对象,体外配制不同浓度的白蛋白(albumin,Alb)、γ-球蛋白(γ-globulin,γ-Glo)、透明质酸(hyaluronic acid,HA)和脂质体(phospholipids,PLs)等人体关节滑液主要成分的复合滑液,研究了不同成分复合滑液润滑条件下PEEK-XLPE关节配副的摩擦磨损行为,探明了滑液组分和浓度对“软-软”关节配副摩擦磨损的影响机制,揭示了“软-软”关节配副在不同成分复合滑液润滑作用下的磨损机理。结果表明:复合滑液中的4种主要成分均对“软-软”配副人工关节材料的摩擦磨损性能有较大影响,其中γ-Glo浓度对摩擦系数(coefficient of friction,COF)影响较大,当γ-Glo浓度由5.83 mg/mL增加至8.75 mg/mL时,摩擦系数增加了29.4%;总蛋白质浓度对磨损率影响较大,由15 mg/mL Alb+3.75 mg/mL γ-Glo增加至35 mg/mL Alb+8.75 mg/mL γ-Glo时,磨损率增加了166.0%。当复合滑液中γ-Glo或总蛋白质浓度过高时,蛋白质在摩擦表面发生不良黏附,使“软-软”配副关节材料的磨损加剧。此外,蛋白质混合液中同时加入HA和PLs,能促进Alb吸附而抑制γ-Glo吸附。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
岑佳佳
张德坤
陈琴
张欣悦
冯存傲
冯海燕
陈凯
关键词 复合滑液蛋白质透明质酸脂质体摩擦磨损    
Abstract:[Objective] The artificial joint is lubricated using synovial fluid, and variations in the synovial fluid components considerably affect the tribological behavior of the sliding pair of the artificial joint. [Methods] Herein, the “soft-soft” joint pair materials composed of polyether-ether-ketone (PEEK) and highly crosslinked polyethylene (XLPE) are studied based on the composite synovial fluid content following artificial joint replacement. The friction and wear behaviors of the PEEK-XLPE “soft-soft” joint pair materials lubricated via different composite synovial fluids, including albumin (Alb), γ-globulin (γ-Glo), hyaluronic acid (HA), and phospholipids (PLs), are studied. The mechanisms behind the effect of the composite synovial fluid composition and content on the friction and wear of “soft-soft” joint pair materials and wear mechanism of “soft-soft” joint pair materials under different composite synovial fluid are elucidated. [Results] The results showed that the four primary components of the composite synovial fluid had a substantial influence on the friction and wear properties of the artificial joint materials, with the γ-Glo content markedly affecting the friction coefficient. When the γ-Glo content increased from 5.83 mg/mL to 8.75 mg/mL and total protein content increased from 15 mg/mL Alb+3.75 mg/mL γ-Glo to 35 mg/mL Alb+8.75 γ-Glo, the friction coefficient increased by 29.4% and 28.7%, while the wear rate increased by 24.6% and 166.0%, respectively. Moreover, excessively high γ-Glo or total protein content in the composite synovial fluid caused poor protein adhesion between friction surfaces. The wear of “soft-soft” joint pair materials was aggravated when “soft-soft” joint pair materials were used. The changes in the PLs and HA contents of the composite synovial fluid had little influence on the tribological properties of these “soft-soft” joint pair materials, but their effects on wear properties were significant. When the PLs content increased from 0.15 mg/mL to 0.45 mg/mL, the friction coefficient changed little, but the wear rate decreased by 29.5%. Additionally, the wear rate increased by 22.0% when the HA content increased from 0.1 mg/mL to 1.5 mg/mL. This indicated that increasing PLs content improved the wear performance of “soft-soft” joint pair materials because PLs molecules contain hydrophobic fatty acids, which could serve as effective lubricants. Further, the thickness of the Alb film increased with the PLs, but that of γ-Glo film exhibited hardly any changes. However, the existence of PLs rendered the γ-Glo layer uniform and stable, thereby reducing wear. Moreover, PLs got adsorbed to the surface of other molecules or polymerized with other molecules, and “soft-soft” joint pair materials slid between lipid bilayers to reduce friction. However, the adsorption of the Alb improved when HA and PLs were added to the protein mixture, inhibiting the adsorption of the γ-Glo (the volume of γ-Glo is much larger than that of Alb); thus, the inhibition of the γ-Glo adsorption by HA caused the aggravation of wear. [Conclusions] The results show that a change in the content of each component considerably affects the friction and wear characteristics of the PEEK-XLPE joint pair materials. This study provides a theoretical foundation for investigating composite synovial fluid and improving the lubrication performance of artificial joints. Moreover, it is essential to prolong the service life of artificial joints. Furthermore, under the simulated physiological environment (temperature and pH) in vitro, based on the test load, waveform, and displacement in implants for surgery—wear of total hip-joint prostheses—part 2: methods of measurement (YY/T 0651—2020), the influence of composite synovial fluid on the biotribological behavior of the PEEK-XLPE joint pair materials will be explored in the future using a hip joint wear tester, which is expected to lay a foundation for the clinical use of PEEK-XLPE joint pair materials.
Key wordscomposite fluid    protein    hyaluronic acid    phospholipids    friction and wear
收稿日期: 2023-09-04      出版日期: 2024-03-06
基金资助:清华大学高端装备界面科学与技术全国重点实验室开放基金项目(SKLTKF21B15);中国科学院兰州化学物理研究所固体润滑国家重点实验室开放基金项目(LSL-2107)
通讯作者: 张德坤,教授,E-mail:dkzhang@cumt.edu.cn     E-mail: dkzhang@cumt.edu.cn
作者简介: 岑佳佳(1998—),女,硕士研究生。
引用本文:   
岑佳佳, 张德坤, 陈琴, 张欣悦, 冯存傲, 冯海燕, 陈凯. 滑液组分对“软-软”配副关节材料摩擦学行为的影响[J]. 清华大学学报(自然科学版), 2024, 64(3): 454-470.
CEN Jiajia, ZHANG Dekun, CHEN Qin, ZHANG Xinyue, FENG Cunao, FENG Haiyan, CHEN Kai. The influence of synovial fluid components on the tribological behavior of “soft-soft” joint pair materials. Journal of Tsinghua University(Science and Technology), 2024, 64(3): 454-470.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2023.26.064  或          http://jst.tsinghuajournals.com/CN/Y2024/V64/I3/454
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1]吴菁, 朱小霞, 叶旭春, 等. 骨关节置换患者手术决策过程的质性研究[J]. 解放军护理杂志, 2019, 36(7):15-18, 23. WU J, ZHU X X, YE X C, et al. Patient's decision-making process regarding joint replacement surgery:Qualitative research[J]. Military Nursing, 2019, 36(7):15-18, 23. (in Chinese)
[2]KANG X Q, ZHANG W, YANG C M. Mechanical properties study of micro-and nano-hydroxyapatite reinforced ultrahigh molecular weight polyethylene composites[J]. Journal of Applied Polymer Science, 2016, 133(3):42869.
[3]HOU N Y, ZHU J, ZHANG H, et al. Epoxy resin-based ultrafine dry powder coatings for implants[J]. Journal of Applied Polymer Science, 2016, 133(37):43960.
[4]ZHANG X G, ZHANG Y L, JIN Z M. A review of the bio-tribology of medical devices[J]. Friction, 2022, 10(1):4-30.
[5]RONY L, LANCIGU R, HUBERT L. Intraosseous metal implants in orthopedics:A review[J]. Morphologie, 2018, 102(339):231-242.
[6]崔文, 张亚丽, 王志强, 等. 人工髋、膝关节磨损测试标准及模拟试验机研究进展[J]. 摩擦学学报, 2019, 39(2):248-258. CUI W, ZHANG Y L, WANG Z Q, et al. Review of the artificial hip and knee wear testing standards and simulation testing machines[J]. Tribology, 2019, 39(2):248-258. (in Chinese)
[7]谭琴, 张亚丽, 张小刚, 等. 滑液组分对人工关节摩擦学行为影响研究进展[J]. 摩擦学学报, 2023, 43(5):581-596. [JP+1]TAN Q, ZHANG Y L, ZHANG X G, et al. Progress of influence of synovial fluid compositions on tribological behavior of artificial joints[J]. Tribology, 2023, 43(5):581-596. (in Chinese)
[8]石宏宇, 刘宇宏, 路新春. 生物黏液的润滑特性研究进展[J]. 摩擦学学报, 2016, 36(6):781-793. SHI H Y, LIU Y H, LU X C. Research progress on lubricating properties of biological mucus[J]. Tribology, 2016, 36(6):781-793. (in Chinese)
[9]GHOSH S, CHOUDHURY D, DAS N S, et al. Tribological role of synovial fluid compositions on artificial joints:A systematic review of the last 10 years[J]. Lubrication Science, 2014, 26(6):387-410.
[10]刘国强, 郭文清, 刘志鲁, 等. 聚合物仿生润滑剂研究进展[J]. 摩擦学学报, 2015, 35(1):108-120. LIU G Q, GUO W Q, LIU Z L, et al. Research progress on polymer-based biomimetic lubricants[J]. Tribology, 2015, 35(1):108-120. (in Chinese)
[11]GALANDÁKOVÁ A, ULRICHOVÁ J, LANGOVÁ K, et al. Characteristics of synovial fluid required for optimization of lubrication fluid for biotribological experiments[J]. Journal of Biomedical Materials Research Part B:Applied Biomaterials, 2017, 105(6):1422-1431.
[12]DUONG C T, LEE J H, CHO Y, et al. Effect of protein concentrations of bovine serum albumin and γ-globulin on the frictional response of a cobalt-chromium femoral head[J]. Journal of Materials Science:Materials in Medicine, 2012, 23(5):1323-1330.
[13]ZHANG H Y, ZHANG S H, LUO J B, et al. Investigation of protein adsorption mechanism and biotribological properties at simulated stem-cement interface[J]. Journal of Tribology, 2013, 135(3):032301.
[14]ZHANG H Y, ZHOU M. The influence of protein concentration on the biotribological properties of the stem-cement interface[J]. Bio-Medical Materials and Engineering, 2014, 24(1):173-179.
[15]NE AČG AS D, VRBKA M, GALANDÁKOVÁ A, et al. On the observation of lubrication mechanisms within hip joint replacements. Part Ⅰ:Hard-on-soft bearing pairs[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 89:237-248.
[16]STEVENSON H, PARKES M, AUSTIN L, et al. The development of a small-scale wear test for CoCrMo specimens with human synovial fluid[J]. Biotribology, 2018, 14:1-10.
[17]ZHANG X Y, ZHANG D K, CHEN K, et al. Tribological characterization of all-polymer prosthesis based on multi-directional motion[J]. Journal of Thermoplastic Composite Materials, 2023, 36(2):749-767.
[18]SCHOLES S C, INMAN I A, UNSWORTH A, et al. Tribological assessment of a flexible carbon-fibre-reinforced poly(ether-ether-ketone) acetabular cup articulating against an alumina femoral head[J]. Proceedings of the Institution of Mechanical Engineers, Part H:Journal of Engineering in Medicine, 2008, 222(3):273-283.
[19]DAVIM J P, CARDOSO R. Effect of the reinforcement (carbon or glass fibres) on friction and wear behaviour of the PEEK against steel surface at long dry sliding[J]. Wear, 2009, 266(7-8):795-799.
[20]DAVIM J P, CARDOSO R. Tribological behaviour of the composite PEEK-CF30 at dry sliding against steel using statistical techniques[J]. Materials & Design, 2006, 27(4):338-342.
[21]李锋, 王安敏, 王成焘. 天然关节软骨与医用不锈钢摩擦磨损行为研究[J]. 摩擦学学报, 2016, 36(1):42-47. LI F, WANG A M, WANG C T. Tribological behavior of articular cartilage against medical stainless steel[J]. Tribology, 2016, 36(1):42-47. (in Chinese)
[22]JIANG H B. Static and dynamic mechanics analysis on artificial hip joints with different interface designs by the finite element method[J]. Journal of Bionic Engineering, 2007, 4(2):123-131.
[23]NE AČG AS D, VRBKA M, GALLO J, et al. On the observation of lubrication mechanisms within hip joint replacements. Part Ⅱ:Hard-on-hard bearing pairs[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 89:249-259.
[24]NAKASHIMA K, SAWAE Y, MURAKAMI T. Study on wear reduction mechanisms of artificial cartilage by synergistic protein boundary film formation[J]. JSME International Journal Series C Mechanical Systems, Machine Elements and Manufacturing, 2005, 48(4):555-561.
[25]SCHMIDT T A, GASTELUM N S, NGUYEN Q T, et al. Boundary lubrication of articular cartilage:Role of synovial fluid constituents[J]. Arthritis & Rheumatism, 2007, 56(3):882-891.
[26]ANGAYARKANNI S A, KAMPF N, KLEIN J. Lipid-bilayer assemblies on polymer-bearing surfaces:The nature of the slip plane in asymmetric boundary lubrication[J]. Langmuir, 2020, 36(51):15583-15591.
[1] 黄秀玲, 郑晔, 赖卫国, 朱俊俊, 华子恺. 人工韧带体外摩擦磨损测量方法[J]. 清华大学学报(自然科学版), 2024, 64(3): 432-441.
[2] 吉政甲, 靳洪允, 骆晚玥, 周可可, 侯书恩, 解国新. 造粒氧化锆增强复合材料的摩擦学性能及优化[J]. 清华大学学报(自然科学版), 2020, 60(8): 639-647.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn