Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2024, Vol. 64 Issue (3): 562-577    DOI: 10.16511/j.cnki.qhdxxb.2023.26.036
  机械工程 本期目录 | 过刊浏览 | 高级检索 |
绳驱动船舱清洗机器人动力学建模及鲁棒控制
李建1,2, 王生海1,2, 刘将1,2, 高钰富1,2, 韩广冬1,2, 孙玉清1,2
1. 大连海事大学 轮机工程学院, 大连 116026;
2. 大连海事大学 科学技术部海底工程技术与装备国际联合研究中心, 大连 116026
Dynamic modeling and robust control of cable-driven cleaning robot for marine multi-curvature bulkhead
LI Jian1,2, WANG Shenghai1,2, LIU Jiang1,2, GAO Yufu1,2, HAN Guangdong1,2, SUN Yuqing1,2
1. Marine Engineering College, Dalian Maritime University, Dalian 116026, China;
2. Ministry of Science and Technology for International Research Center of Subsea Engineering Technology and Equipment, Dalian Maritime University, Dalian 116026, China
全文: PDF(16993 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 由于船体表面形状不规则及海浪激励引起船舶运动,因此船舶清洗作业成为难点。为实现船舶高效、自动化清洗作业,该文提出一种变结构空间绳驱动清洗机器人。首先,采用Newton-Euler法建立包含船舶运动及多种外部扰动的动力学模型。通过流体仿真试验验证了水射流可喷射至作业面,并得到水枪反作用力。其次,考虑到海风对清洗作业的影响,采用风压投影法计算得到风扰力,并将风扰力与水枪反作用力共同作为扰动输入。再次,在动力学模型的基础上,为实现动基座激励下的高精度轨迹跟踪控制,提出了一种模糊自适应比例-积分(proportional-integral,PI)滑模控制器(fuzzy adaptive PI sliding mode controller,FAPI-SMC)。最后,采用Lyapunov理论证明了控制系统稳定,并通过仿真试验验证了FAPI-SMC有效。结果表明:在不同形式的波浪激励和作业场景下,FAPI-SMC的位置稳态误差为±0.02 m,角度稳态误差为±0.02°。与传统的比例-积分-微分(proportional-integral-derivative,PID)控制器相比,FAPI-SMC的最大误差减少6%,响应速度提升57%,稳态性能提升3%。该研究成果可为绳驱动机构的实船应用提供理论依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李建
王生海
刘将
高钰富
韩广冬
孙玉清
关键词 绳驱动并联机器人动力学模型滑模控制轨迹跟踪稳定性    
Abstract:[Objective] Cleaning operations for ships become challenging due to the irregular hull surface and ship motion. Thus, to achieve efficient and automated cleaning operations, this study proposes a variable-structure spatial cable-driven cleaning robot. Existing research is mainly based on fixed-base conditions and has not considered the influence of base motion on modeling accuracy. The cleaning robot is mounted on ships, and the 6 degrees of freedom ship motion will inevitably affect the tracking accuracy of the motion platform, eventually causing closed-loop instability of the system. Moreover, most research simplifies the external disturbances acting on the motion platform, which cannot accurately comprehend the influence of external disturbances on tracking accuracy. The cleaning robot is affected by external disturbances such as wind, waves, and currents during operation, and existing dynamic models are inapplicable. [Methods] To address the aforementioned issues, this study proposes the use of the Newton-Euler method to establish a dynamic model including ship motion and external disturbances. Fluid simulation is used to verify that water flow can be sprayed onto the operating surface, and to determine the reaction force acting on the motion platform. Furthermore, given the influence of sea wind on cleaning operations, the wind pressure projection method is used to calculate the wind’s disturbing force and combine it with the reaction force of water flow as an external disturbance. Furthermore, given the uncertainty of the dynamic model, it is decomposed into the modeled part and model error, and separate control laws are designed for these two parts. A proportional-integral sliding mode controller (PI-SMC) is further proposed. To improve the response speed and tracking accuracy of the control system, a fuzzy adaptive PI sliding mode controller (FAPI-SMC) is proposed based on the PI-SMC with an adaptive law and a fuzzy control strategy. Finally, the stability of the control system is proven by the Lyapunov theory, and the effectiveness of the controller is verified through simulations. [Results] The numerical analysis results showed that: (1) Under the set operating conditions, water flow could be sprayed onto the operating surface, and the mean value of the reaction force was approximately 9 N. (2) Under different forms of wave excitations and operating conditions, the position steady-state error of the motion platform under FAPI-SMC was maintained at ±0.02 m, and the angle steady-state error was maintained at ±0.02°. (3) When the operating conditions change, the steady-state error under proportional-integral-differential controller (PID) changed by approximately 0.16 m, the steady-state error under PI-SMC changed by approximately 0.19 m, and a smaller steady-state error under FAPI-SMC changed by approximately 0.01 m. (4) Compared with PI-SMC and PID, the maximum error of FAPI-SMC was reduced by 8% and 6%, respectively, the response speed was improved by 18% and 57%, respectively, and the steady-state performance was improved by 2% and 3%, respectively. [Conclusions] The proposed control strategy has high precision and rapid response under ship motion and external disturbances. Moreover, the cleaning robot has excellent operating stability for different wave excitations and operating conditions. Thus, the dynamic model and control strategy proposed in this study can provide theoretical guidance for applying cable-driven mechanisms in ships.
Key wordscable-driven parallel robot    dynamic model    sliding mode control    trajectory tracking    stability
收稿日期: 2023-02-25      出版日期: 2024-03-06
基金资助:国家重点研发计划项目(2018YFC0309003);国家自然科学基金资助项目(52101396);中央高校基本科研业务费专项资金项目(3132022207)
通讯作者: 王生海,副教授,E-mail:shenghai_wang@dlmu.edu.cn     E-mail: shenghai_wang@dlmu.edu.cn
作者简介: 李建(1999-),男,博士研究生。
引用本文:   
李建, 王生海, 刘将, 高钰富, 韩广冬, 孙玉清. 绳驱动船舱清洗机器人动力学建模及鲁棒控制[J]. 清华大学学报(自然科学版), 2024, 64(3): 562-577.
LI Jian, WANG Shenghai, LIU Jiang, GAO Yufu, HAN Guangdong, SUN Yuqing. Dynamic modeling and robust control of cable-driven cleaning robot for marine multi-curvature bulkhead. Journal of Tsinghua University(Science and Technology), 2024, 64(3): 562-577.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2023.26.036  或          http://jst.tsinghuajournals.com/CN/Y2024/V64/I3/562
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] HUA J, CHIU Y S, TSAI C Y. En-route operated hydroblasting system for counteracting biofouling on ship hull[J]. Ocean Engineering, 2018, 152:249-256.
[2] SHI X T, XU L, XU H B, et al. A 6-DOF humanoid wall-climbing robot with flexible adsorption feet based on negative pressure suction[J]. Mechatronics, 2022, 87:102889.
[3] WANG B, NI Z F, SHEN Y, et al. Design and analysis of a wheel-leg compound variable curvature ship hull cleaning robot[J]. Ocean Engineering, 2022, 266:112755.
[4] BOSTELMAN R, ALBUS J, DAGALAKIS N, et al. Applications of the NIST robocrane[C]//Proceedings of the 5th International Symposium on Robotics and Manufacturing. Maui, USA:NLST, 1994:403-410.
[5] NAN R D. Five hundred meter aperture spherical radio telescope (FAST)[J]. Science in China Series G, 2006, 49(2):129-148.
[6] EL-GHAZALY G, GOUTTEFARDE M, CREUZE V. Adaptive terminal sliding mode control of a redundantly-actuated cable-driven parallel manipulator:CoGiRo[C]//Proceedings of the Second International Conference on Cable-Driven Parallel Robots. Cham, Germany:Springer, 2015:179-200.
[7] 李政清, 侯森浩, 韦金昊, 等. 面向仓储物流的平面索并联机器人视觉自标定方法[J]. 清华大学学报(自然科学版), 2022, 62(9):1508-1515. LI Z Q, HOU S H, WEI J H, et al. Vision-based auto-calibration method for planar cable-driven parallel robot for warehouse and logistics tasks[J]. Journal of Tsinghua University (Science and Technology), 2022, 62(9):1508-1515. (in Chinese)
[8] 王晓光, 吴军, 林麒. 欠约束绳牵引并联支撑系统运动学分析与鲁棒控制[J]. 清华大学学报(自然科学版), 2021, 61(3):193-201. WANG X G, WU J, LIN Q. Kinematics analysis and control of under-constrained cable-driven parallel suspension systems[J]. Journal of Tsinghua University (Science and Technology), 2021, 61(3):193-201. (in Chinese)
[9] WU Y L, CHENG H H, FINGRUT A, et al. CU-brick cable-driven robot for automated construction of complex brick structures:From simulation to hardware realisation[C]//2018 IEEE International Conference on Simulation, Modeling, and Programming for Autonomous Robots (SIMPAR). Brisbane, Australia:IEEE, 2018:166-173.
[10] MOON S M, SHIN C Y, HUH J, et al. Window cleaning system with water circulation for building façade maintenance robot and its efficiency analysis[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2015, 2(1):65-72.
[11] 李建, 陈羿宗, 王生海, 等. 绳驱动并联清洗机器人绳索张力优化[J]. 科学技术与工程, 2022, 22(35):15667-15674. LI J, CHEN Y Z, WANG S H, et al. Cable tension optimization of cable-driven parallel cleaning robots[J]. Science Technology and Engineering, 2022, 22(35):15667-15674. (in Chinese)
[12] [JP+2]赵雅聪, 王启明. FAST索牵引并联机器人的动力学建模与仿真[J]. 清华大学学报(自然科学版), 2022, 62(11):1772-1779. ZHAO Y C, WANG Q M. Dynamic modeling of the FAST cable-driven parallel robots[J]. Journal of Tsinghua University (Science and Technology), 2022, 62(11):1772-1779. (in Chinese)
[13] CAVERLY R J, FORBES J R. Dynamic modeling and noncollocated control of a flexible planar cable-driven manipulator[J]. IEEE Transactions on Robotics, 2014, 30(6):1386-1397.
[14] ABDALLAH F B, AZOUZ N, BEJI L, et al. Modeling of a heavy-lift airship carrying a payload by a cable-driven parallel manipulator[J]. International Journal of Advanced Robotic Systems, 2019, 16(4):1729881419861769.
[15] KINO H, YOSHITAKE T, WADA R, et al. 3-DOF planar parallel-wire driven robot with an active balancer and its model-based adaptive control[J]. Advanced Robotics, 2018, 32(14):766-777.
[16] WANG Y Y, ZHU K W, YAN F, et al. Adaptive super-twisting nonsingular fast terminal sliding mode control for cable-driven manipulators using time-delay estimation[J]. Advances in Engineering Software, 2019, 128:113-124.
[17] JIA H Y, SHANG W W, XIE F, et al. Second-order sliding-mode-based synchronization control of cable-driven parallel robots[J]. IEEE/ASME Transactions on Mechatronics, 2020, 25(1):383-394.
[18] CAVERLY R J, FORBES J R. Flexible cable-driven parallel manipulator control:Maintaining positive cable tensions[J]. IEEE Transactions on Control Systems Technology, 2018, 26(5):1874-1883.
[19] 韦慧玲, 仇原鹰, 盛英. 一种绳牵引摄像机器人的运动控制策略与稳定性研究[J]. 振动与冲击, 2017, 36(9):93-100, 171. WEI H L, QIU Y Y, SHENG Y. Motion control strategy and stability of a cable-based camera robot[J]. Journal of Vibration and Shock, 2017, 36(9):93-100, 171. (in Chinese)
[20] CHEN Y Z, LI J, WANG S H, et al. Dynamic modeling and robust adaptive sliding mode controller for marine cable-driven parallel derusting robot[J]. Applied Sciences, 2022, 12(12):6137.
[21] BORGSTROM P H, JORDAN B L, BORGSTROM B J, et al. NIMS-PL:A cable-driven robot with self-calibration capabilities[J]. IEEE Transactions on Robotics, 2009, 25(5):1005-1015.
[22] CHEN Z Y. LaSalle-Yoshizawa theorem for nonlinear systems with external inputs:A counter-example[J]. Automatica, 2023, 147:110636.
[23] FENG Y, YU X H, MAN Z H. Non-singular terminal sliding mode control of rigid manipulators[J]. Automatica, 2002, 38(12):2159-2167.
[24] 王六平. PID控制系统设计:使用MATLAB和Simulink仿真与分析[M]. 北京:清华大学出版社, 2023. WANG L P. PID control system design and automatic tuning using MATLAB/Simulink[M]. Beijing:Tsinghua University Press, 2023. (in Chinese)
[25] BHAT S P, BERNSTEIN D S. Finite-time stability of continuous autonomous systems[J]. SIAM Journal on Control and Optimization, 2000, 38(3):751-766.
[26] MONDAL S, MAHANTA C. Adaptive second order terminal sliding mode controller for robotic manipulators[J]. Journal of the Franklin Institute, 2014, 351(4):2356-2377.
[27] FOSSEN T I. Handbook of marine craft hydrodynamics and motion control[M]. Hoboken:John Wiley & Sons, 2011.
[28] DNV. Environmental conditions and environmental loads:DNV-RP-C205[S]. Oslo:DNV, 2007.
[1] 邱豪楠, 刘威, 唐悦, 王胡军, 郑靖. 仿生超滑涂层研究进展[J]. 清华大学学报(自然科学版), 2024, 64(3): 393-408.
[2] 金明, 陆羽笛, 李原森, 柳伟杰, 葛冰, 臧述升. 中心分级燃烧器流-热-声动态特性实验研究[J]. 清华大学学报(自然科学版), 2024, 64(1): 99-108.
[3] 苏阳, 李晓伟, 吴莘馨, 张作义. 核反应堆蒸汽发生器两相流不稳定性现象规律、研究方法及应用[J]. 清华大学学报(自然科学版), 2023, 63(8): 1184-1203.
[4] 胡钰文, 闫晓, 宫厚军, 王艳林, 周磊. 耦合传热并联矩形通道流动不稳定性数值研究[J]. 清华大学学报(自然科学版), 2023, 63(8): 1257-1263.
[5] 付雯, 温浩, 黄俊珲, 孙镔轩, 陈嘉杰, 陈武, 冯跃, 段星光. 基于非线性动力学模型补偿的水下机械臂自适应滑模控制[J]. 清华大学学报(自然科学版), 2023, 63(7): 1068-1077.
[6] 扈学超, 毕笑天, 刘策, 邵卫卫. 氢燃料微预混火焰燃烧不稳定性实验研究[J]. 清华大学学报(自然科学版), 2023, 63(4): 572-584.
[7] 李东兴, 侯森浩, 孙海宁, 黎帆, 唐晓强. 航天降落伞撕裂带测试装置及其动态索力响应特性[J]. 清华大学学报(自然科学版), 2023, 63(3): 294-301.
[8] 江海龙, 王晓光, 王家骏, 柳汀, 林麒. 全模颤振四绳支撑系统运动特性与稳定性[J]. 清华大学学报(自然科学版), 2023, 63(11): 1856-1867.
[9] 赵彤, 蔡晨同, 王永飞, 卞鹏锡, 张毅博. 球头铣刀铣削薄板件颤振预测[J]. 清华大学学报(自然科学版), 2022, 62(9): 1474-1483.
[10] 刘鹏, 乔心州. 大跨度完全约束空间3-DOF柔索驱动并联机器人稳定性灵敏度研究[J]. 清华大学学报(自然科学版), 2022, 62(9): 1548-1558.
[11] 王煜天, 张瑞杰, 吴军, 汪劲松. 移动式混联喷涂机器人的动力学性能波动评价[J]. 清华大学学报(自然科学版), 2022, 62(5): 971-977.
[12] 赵雅聪, 王启明. FAST索牵引并联机器人的动力学建模与仿真[J]. 清华大学学报(自然科学版), 2022, 62(11): 1772-1779.
[13] 刘威, 谢小荣, 姜齐荣, 毛航银. 变流式新能源机组的次/超同步振荡、小扰动同步稳定性与阻抗模型分析[J]. 清华大学学报(自然科学版), 2022, 62(10): 1706-1714.
[14] 黄伟灿, 蒋晓华, 薛芃, 李欣阳, 沈稚栋, 孙宇光. 超导直流能源管道载流导体设计[J]. 清华大学学报(自然科学版), 2022, 62(10): 1715-1720.
[15] 陈亮, 秦兆博, 孔伟伟, 陈鑫. 基于最优前轮侧偏力的智能汽车LQR横向控制[J]. 清华大学学报(自然科学版), 2021, 61(9): 906-912.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn