Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2024, Vol. 64 Issue (5): 780-788    DOI: 10.16511/j.cnki.qhdxxb.2023.22.052
  专题:社会媒体处理 本期目录 | 过刊浏览 | 高级检索 |
基于对话的中文正面情感风格迁移
胡玉婷, 左家莉, 刘江盛, 万剑怡, 王明文
江西师范大学 计算机信息工程学院, 南昌 330022
Chinese positive sentiment style transfer based on dialogues
HU Yuting, ZUO Jiali, LIU Jiangsheng, WAN Jianyi, WANG Mingwen
School of Computer and Information Engineering, Jiangxi Normal University, Nanchang 330022, China
全文: PDF(2267 KB)   HTML 
输出: BibTeX | EndNote (RIS)      
摘要 文本风格迁移旨在保留文本内容的前提下, 通过编辑或生成的方法使得目标文本带有某些特殊属性, 如礼貌、情感、性别等。现有的情感风格迁移研究主要集中在英文数据集上, 在中文数据集上的研究相对较少。该文构建了一个基于对话的中文情感文本数据集, 该数据集的部分原始数据源自电视连续剧《家有儿女》中的对白, 并对其进行人工标注和循环模型标注。目前该数据集的负面情感文本和正面情感文本句子共30 836个。根据该数据集中大多数情感词是显性的特点, 在编辑类的模型上开展了基于对话的中文正面情感风格迁移的研究。实验结果表明:在该数据集上, 编辑类的模型可以较好地识别文本的情感属性, 并实现文本正面情感风格迁移。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词 自然语言处理文本生成情感风格迁移循环模型编辑模型家庭对话    
Abstract:[Objective] Several studies highlight that negative sentiment dialogues within the family remarkably impact individuals' mental and physical well-being. Conversely, positive sentiment dialogues offer individuals constructive feedback, motivating learning and personal growth. Such dialogues aid in building self-confidence and positive attitude, enabling better coping with life's challenges. Text style transfer is an effective tool to shift negative sentimental dialogues to positive sentimental dialogues. The goal of text style transfer is to retain the content of the text while imbuing the generated text with specific attributes. Sentiment style transfer is an important research direction in natural language processing, and sentiment style transfer in the context of family dialogues holds practical value. However, the current literature on sentiment style transfer has mainly focused on English datasets with relatively limited research within the Chinese domain. We constructed a dialogue-based Chinese sentimental text dataset in this study. The initial data was extracted from dialogues in the TV series “Home with Kids”, where considerable sentiment differences were observed between dialogues involving characters Liu Mei and Liu Xing as well as Liu Mei and Xia Xue. While interactions between Liu Mei and Liu Xing were primarily critical, interactions between Liu Mei and Xia Xue were characterized by encouragement and respect. Preprocessing was applied to this dataset in the following steps: (1) Data cleaning, filtering, and format conversion were performed to ensure data quality and consistency. (2) A recurrent modeling annotation method was employed using suitable algorithms and models to annotate the data, identifying key information and features. Six iterations were performed, with the classifier being fine-tuned using the data updated from the previous iteration each time. (3) Manual annotation was also conducted, meticulously reviewing and labeling the data manually to further enhance accuracy and reliability. Furthermore, the final dataset comprises 30 836 sentences, including 11 562 sentences with positive sentiment content and 19 274 sentences with negative sentiment content. In this dialogue dataset, most texts explicitly contain sentiment-related words. Based on the characteristics of this dialogue dataset, research involving dialogue-based Chinese positive sentiment style transfer was started using editing-based delete-retrieve-generate (DRG), tagger and generator (TAG), conditional Bert (CondBert), and tagging without rewriting (TWR) models. In addition, the improved TWR (TWR*) Transformer model was introduced. The original TWR model used a multilayer perceptron to train a style classifier. To improve the ability to accurately identify specific styles, a style classifier was trained based on RoBERTa-Large-Chinese model for distinguishing different text styles. These experiments demonstrated that using the pretrained language model RoBERTa-Large-Chinese produced enhanced classification results, which was attributed to the close relationship between the attention weights of the penultimate layer in the Transformer model and words commonly associated with positive and negative sentiments. RoBERTa-Large-Chinese model presented a higher accuracy in recognizing textual sentiment style attribute words. Experimental results confirm that the style classifier trained on our dataset can effectively identify negative content within text. Through both automated and manual evaluations, this TWR* model outperforms baseline models in identifying textual sentiment attributes, achieving positive sentiment style transfer, thus verifying the effectiveness of model enhancements and the validity of the dataset.
Key wordsnatural language processing    text generation    sentiment style transfer    recurrent model    editing-based model    family dialogue
收稿日期: 2023-09-04      出版日期: 2024-04-22
基金资助:国家自然科学基金项目(61866018,62266021)
通讯作者: 左家莉,副教授,E-mail:zjl@jxnu.edu.cn     E-mail: zjl@jxnu.edu.cn
引用本文:   
胡玉婷, 左家莉, 刘江盛, 万剑怡, 王明文. 基于对话的中文正面情感风格迁移[J]. 清华大学学报(自然科学版), 2024, 64(5): 780-788.
HU Yuting, ZUO Jiali, LIU Jiangsheng, WAN Jianyi, WANG Mingwen. Chinese positive sentiment style transfer based on dialogues. Journal of Tsinghua University(Science and Technology), 2024, 64(5): 780-788.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2023.22.052  或          http://jst.tsinghuajournals.com/CN/Y2024/V64/I5/780
[1] JIN D, JIN Z J, HU Z T, et al. Deep learning for text style transfer:A survey[J]. Computational Linguistics, 2022, 48(1):155-205.
[2] PRYZANT R, MARTINEZ R D, DASS N, et al. Automatically neutralizing subjective bias in text[C]//Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto, USA, 2020:480-489.
[3] VAN DEN BERCKEN L, SIPS R J, LOFI C, et al. Evaluating neural text simplification in the medical domain[C]//The World Wide Web Conference. San Francisco, USA, 2019:3286-3292.
[4] PRABHUMOYE S, TSVETKOV Y, SALAKHUTDINOV R, et al. Style transfer through back-translation[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics. Melbourne, Australia, 2018:866-876.
[5] MIR R, FELBO B, OBRADOVICH N, et al. Evaluating style transfer for text[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies. Minneapolis, USA, 2019:495-504.
[6] JHAMTANI H, GANGAL V, HOVY E, et al. Shakespearizing modern language using copy-enriched sequence to sequence models[C]//Proceedings of the Workshop on Stylistic Variation. Copenhagen, Denmark, 2017:10-19.
[7] RAO S, TETREAULT J. Dear sir or madam, may I introduce the GYAFC dataset:Corpus, benchmarks and metrics for formality style transfer[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies. New Orleans, USA, 2018:129-140.
[8] LOGACHEVA V, DEMENTIEVA D, USTYANTSEV S, et al. ParaDetox:Detoxification with parallel data[C]//Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics. Dublin, Ireland, 2022:6804-6818.
[9] HU Z Q, LEE R K W, AGGARWAL C C, et al. Text style transfer:A review and experimental evaluation[J]. ACM SIGKDD Explorations Newsletter, 2022, 24(1):14-45.
[10] LI J C, JIA R B, HE H, et al. Delete, retrieve, generate:A simple approach to sentiment and style transfer[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies, Volume 1(Long Papers). New Orleans, USA, 2018:1865-1874.
[11] MADAAN A, SETLUR A, PAREKH T, et al. Politeness transfer:A tag and generate approach[C/OL]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Online, 2020:1869-1881.
[12] DALE D, VORONOV A, DEMENTIEVA D, et al. Text detoxification using large pre-trained neural models[C]//Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. Punta Cana, Dominica, 2021:7979-7996.
[13] SHUO Y. Tagging without rewriting:A probabilistic model for unpaired sentiment and style transfer[C]//Proceedings of the 12th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis. Dublin, Ireland, 2022:293-303.
[14] FU Z X, TAN X Y, PENG N Y, et al. Style transfer in text:Exploration and evaluation[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto, USA, 2018.
[15] YI X Y, LIU Z H, LI W H, et al. Text style transfer via learning style instance supported latent space[C]//Proceedings of the 29th International Joint Conference on Artificial Intelligence. Yokohama, Japan, 2020:3801-3807.
[16] LIU D Y H, FU J, ZHANG Y D, et al. Revision in continuous space:Unsupervised text style transfer without adversarial learning[C]//Proceedings of the 34th AAAI Conference on Artificial Intelligence. New York, USA, 2020:8376-8383.
[17] DEVLIN J, CHANG M W, LEE K, et al. Bert:Pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies. Minneapolis, USA, 2019:4171-4186.
[18] AREFYEV N, SHELUDKO B, PODOLSKIY A, et al. Always keep your target in mind:Studying semantics and improving performance of neural lexical substitution[C]//Proceedings of the 28th International Conference on Computational Linguistics. Barcelona, Spain, 2020:1242-1255.
[19] HEAFIELD K. KenLM:Faster and smaller language model queries[C]//Proceedings of the Sixth Workshop on Statistical Machine Translation. Edinburgh, Scotland, 2011:187-197.
[20] LAFFERTY J D, MCCALLUM A, PEREIRA F C, et al. Conditional random fields:Probabilistic models for segmenting and labeling sequence data[C]//Proceedings of the 18th International Conference on Machine Learning. San Francisco, USA, 2001:282-289.
[21] VITERBI A. Error bounds for convolutional codes and an asymptotically optimum decoding algorithm[J]. IEEE Transactions on Information Theory, 1967, 13(2):260-269.
[22] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, USA, 2017:6000-6010.
[23] HOOVER B, STROBELT H, GEHRMANN S. exBERT:A visual analysis tool to explore learned representations in transformer models//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics:System Demonstrations. Online, 2020:187-196.
[24] PAPINENI K, ROUKOS S, WARD T, et al. BLEU:A method for automatic evaluation of machine translation[C]//Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics. Philadelphia, USA, 2002:311-318.
[25] ZHANG T Y, KISHORE V, WU F, et al. BERTScore:Evaluating text generation with BERT//8th International Conference on Learning Representations. Online, 2020:26-30.
[26] LAN Z Z, CHEN M D, GOODMAN S, et al. ALBERT:A lite BERT for self-supervised learning of language representations. arXiv:1909.11942, 2021.
[27] LIU Y H, OTT M, GOYAL N, et al. RoBERTa:A robustly optimized BERT pretraining approach. arXiv:1907.11692,2019.
[1] 王昀, 胡珉, 塔娜, 孙海涛, 郭毅峰, 周武爱, 郭昱, 张皖哲, 冯建华. 大语言模型及其在政务领域的应用[J]. 清华大学学报(自然科学版), 2024, 64(4): 649-658.
[2] 王庆人, 王银子, 仲红, 张以文. 面向中文的字词组合序列实体识别方法[J]. 清华大学学报(自然科学版), 2023, 63(9): 1326-1338.
[3] 陆思聪, 李春文. 基于场景与话题的聊天型人机会话系统[J]. 清华大学学报(自然科学版), 2022, 62(5): 952-958.
[4] 胡滨, 耿天玉, 邓赓, 段磊. 基于知识蒸馏的高效生物医学命名实体识别模型[J]. 清华大学学报(自然科学版), 2021, 61(9): 936-942.
[5] 贾旭东, 王莉. 基于多头注意力胶囊网络的文本分类模型[J]. 清华大学学报(自然科学版), 2020, 60(5): 415-421.
[6] 陈乐乐, 黄松, 孙金磊, 惠战伟, 吴开舜. 基于BM25算法的问题报告质量检测方法[J]. 清华大学学报(自然科学版), 2020, 60(10): 829-836.
[7] 王元龙, 李茹, 张虎, 王智强. 阅读理解中因果关系类选项的研究[J]. 清华大学学报(自然科学版), 2018, 58(3): 272-278.
[8] 卢兆麟, 李升波, Schroeder Felix, 周吉晨, 成波. 结合自然语言处理与改进层次分析法的乘用车驾驶舒适性评价[J]. 清华大学学报(自然科学版), 2016, 56(2): 137-143.
[9] 张旭, 王生进. 基于自然语言处理的特定属性物体检测[J]. 清华大学学报(自然科学版), 2016, 56(11): 1137-1142.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn