Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2024, Vol. 64 Issue (5): 821-830    DOI: 10.16511/j.cnki.qhdxxb.2024.21.007
  专题:能源地下结构与工程 本期目录 | 过刊浏览 | 高级检索 |
多年冻土区太阳能制冷桩基主动冷却效果
孙兆辉1, 刘建坤1,2, 陈浩华1, 游田1
1. 中山大学 土木工程学院, 珠海 519082;
2. 南方海洋科学与工程广东实验室, 珠海 519082
Active cooling effect of solar cooling piles in permafrost regions
SUN Zhaohui1, LIU Jiankun1,2, CHEN Haohua1, YOU Tian1
1. School of Civil Engineering, Sun Yat-sen University, Zhuhai 519082, China;
2. Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
全文: PDF(15499 KB)   HTML 
输出: BibTeX | EndNote (RIS)      
摘要 桩基是多年冻土区最为常见的基础形式之一, 降低桩基工程热扰动和提高桩基长期稳定性是冻土工程研究的重点。该文将太阳能制冷技术引入多年冻土区桩基工程, 并开展主动冷却桩基现场试验与数值模拟研究。试验结果表明:温控桩壁的制冷温度可降至负温以下, 运行3、10和30 d的制冷半径分别达到0.65、1.24和1.5 m以上; 通过理论分析与数值反演估算温控桩的有效制冷功率约180 W, 制冷因数为0.9。模拟结果表明:制冷时长越大, 桩壁温度振幅越大, 稳定温度越低; 制冷时长6、9和12 h/d所对应的桩壁温度分别可降至-2.39、-3.48和-4.45℃; 10 a后的影响半径分别超出6.68、8.34和9.46 m; 温控桩服役10 a后停止运行, 桩周冻土仍可以在2~4 a内处于低温稳定状态。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词 多年冻土区太阳能制冷技术桩基础地温制冷效果    
Abstract:[Objective] Pile foundations are one of the most commonly used foundation types in permafrost regions and are characterized by low thermal disturbance and high bearing capacity. Reducing engineering thermal disturbances and improving the long-term stability of pile foundations are key concerns in permafrost engineering. For friction pile foundations, bearing capacity mainly depends on the freezing strength at the interface between the pile and permafrost. Recently, global warming has increased, leading to an acceleration of the degradation of permafrost. It appears that the traditional design method relying solely on increasing pile diameter and length to improve pile bearing capacity is too conservative. Additionally, these methods do not have the bearing capacity reserves and may not be able to address the challenges of climate warming. Therefore, pile foundation settlement frequently occurs in permafrost regions. This study introduces solar cooling technology into permafrost engineering by proposing a solar cooling pile foundation. It comprises a solar power generation system, a vapor compression refrigeration system, and a concrete pile. This new structure actively cools the permafrost around the pile using a solar cooling system to protect the permafrost from climate warming effects. In this study, onsite experiments were conducted using a model pile in the Qinghai-Tibet Plateau permafrost region. The model pile had a diameter and length of 0.16 and 4.5 m, respectively. We analyzed the actual cooling effects of the solar cooling pile, including the cooling temperature, cooling radius, and cooling power. Furthermore, we established a numerical model of the temperature field of solar cooling piles using finite element software (COMSOL Multiphysics). We conducted long-term cooling performance simulations under different cooling durations (6, 9, and 12 h/d). The field test results demonstrated that the cooling temperature of the solar cooling pile sidewall could be reduced to a negative temperature, and the cooling radius reached 0.65, 1.24, and 1.5 m after operating for 3, 10, and 30 days, respectively. The adequate cooling power of the solar cooling pile was estimated to be approximately 180 W through theoretical analysis and numerical simulation. The coefficient of performance was approximately 0.9. The simulation results revealed that the longer the cooling duration is, the greater the amplitude of the pile-side temperature and the lower the stable temperature is. The pile temperature corresponding to cooling durations of 6, 9, and 12 h/d were reduced to -2.39 ℃, -3.48 ℃, and -4.45 ℃, respectively; moreover, after ten years, the influence radius increased to 6.68, 8.34, and 9.46 m, respectively. Even if the solar cooling pile stopped operating, the permafrost around the pile could remain in a stable low-temperature state for 2—4 years, providing ample time to maintain the solar cooling system. The solar cooling pile can significantly reduce the permafrost temperature around the pile, effectively preventing permafrost degradation. In the future, it can be combined with remote control of the cooling temperature and duration, offering the prospect of achieving precise supplementary cooling for permafrost. This study provides a new method for designing and constructing piles in permafrost regions.
Key wordspermafrost regions    solar cooling technology    pile foundation    ground temperature    cooling effect
收稿日期: 2023-12-15      出版日期: 2024-04-22
基金资助:国家自然科学基金面上项目(42171130);国家自然科学基金重点项目(41731281)
通讯作者: 刘建坤,教授,E-mail:liujiank@mail.sysu.edu.cn     E-mail: liujiank@mail.sysu.edu.cn
引用本文:   
孙兆辉, 刘建坤, 陈浩华, 游田. 多年冻土区太阳能制冷桩基主动冷却效果[J]. 清华大学学报(自然科学版), 2024, 64(5): 821-830.
SUN Zhaohui, LIU Jiankun, CHEN Haohua, YOU Tian. Active cooling effect of solar cooling piles in permafrost regions. Journal of Tsinghua University(Science and Technology), 2024, 64(5): 821-830.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2024.21.007  或          http://jst.tsinghuajournals.com/CN/Y2024/V64/I5/821
[1] YOU Y H, WANG J C, WU Q B, et al. Causes of pile foundation failure in permafrost regions:The case study of a dry bridge of the Qinghai-Tibet Railway[J]. Engineering Geology, 2017, 230:95-103.
[2] SHI R, WEN Z, LI D S, et al. Effect of freeze-thaw cycles on the performance of cast-in-place piles in permafrost regions:Working state and action effect sharing[J]. Permafrost and Periglacial Processes, 2022, 33(2):147-159.
[3] 商允虎, 牛富俊, 吴旭阳, 等. 多年冻土区钻孔灌注桩施工过程热力特性研究[J]. 铁道学报, 2020, 42(5):127-13; 5. SHANG Y H, NIU F J, WU X Y, et al. Study on ground thermal regime and bearing capacity of a cast-in-place pile in permafrost regions[J]. Journal of the China Railway Society, 2020, 42(5):127-135. (in Chinese)
[4] 陈坤, 俞祁浩, 郭磊, 等. 多年冻土区灌注桩的人工冷却试验研究[J]. 中国公路学报, 2020, 33(9):104-114. CHEN K, YU Q H, GUO L, et al. Artificial cooling of cast-in-place piles in permafrost regions[J]. China Journal of Highway and Transport, 2020, 33(9):104-114. (in Chinese)
[5] ALDAEEF A A, RAYHANI M T. Interface shear strength characteristics of steel piles in frozen clay under varying exposure temperature[J]. Soils and Foundations, 2019, 59(6):2110-2124.
[6] LIU J K, LV P, CUI Y H, et al. Experimental study on direct shear behavior of frozen soil-concrete interface[J]. Cold Regions Science and Technology, 2014, 104-105:1-6.
[7] 吕鹏, 刘建坤. 冻土与混凝土接触面直剪试验研究[J]. 铁道学报, 2015, 37(2):106-110. LV P, LIU J K. An experimental study on direct shear tests of frozen soil-concrete interface[J]. Journal of the China Railway Society, 2015, 37(2):106-110. (in Chinese)
[8] HE P F, MU Y H, MA W, et al. Testing and modeling of frozen clay-concrete interface behavior based on large-scale shear tests[J]. Advances in Climate Change Research, 2021, 12(1):83-94.
[9] JOHNSTON G H. Permafrost:Engineering design and construction[M]. Toronto:Wiley, 1981:289-295.
[10] SHANG Y H, NIU F J, WU X Y, et al. A novel refrigerant system to reduce refreezing time of cast-in-place pile foundation in permafrost regions[J]. Applied Thermal Engineering, 2018, 128:1151-1158.
[11] CHEN K, YU Q H, GUO L, et al. A fast-freezing system to enhance the freezing force of cast-in-place pile quickly in permafrost regions[J]. Cold Regions Science and Technology, 2020, 179:103140.
[12] CHEN L, YU W B, LU Y, et al. Characteristics of heat fluxes of an oil pipeline armed with thermosyphons in permafrost regions[J]. Applied Thermal Engineering, 2021, 190:116694.
[13] 蒋代军, 王旭, 刘德仁, 等. 青藏铁路多年冻土地基输电塔热棒桩基稳定性试验研究[J]. 岩石力学与工程学报, 2014, 33(S2):4258-4263. JIANG D J, WANG X, LIU D R, et al. Experimental study of stability of piled foundation with thermosyphons of power transmission tower along Qinghai-Tibet Railway in permafrost regions[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(S2):4258-4263. (in Chinese)
[14] HU T F, LIU J K, HAO Z H, et al. Design and experimental study of a solar compression refrigeration apparatus (SCRA) for embankment engineering in permafrost regions[J]. Transportation Geotechnics, 2020, 22:100311.
[15] 孙兆辉, 刘建坤, 游田, 等. 光伏直驱压缩式制冷装置对多年冻土路基热稳定性的影响[J]. 中南大学学报(自然科学版), 2023, 54(5):2006-2019. SUN Z H, LIU J K, YOU T, et al. Influence of solar direct-drive compression refrigeration apparatus on thermal stability of permafrost embankment[J]. Journal of Central South University (Science and Technology), 2023, 54(5):2006-2019. (in Chinese)
[16] 孙兆辉, 刘建坤, 胡田飞, 等. 用于调控多年冻土路基的太阳能压缩式制冷装置现场试验[J]. 岩石力学与工程学报, 2022, 41(S1):3044-3052. SUN Z H, LIU J K, HU T F, et al. Field test of solar driven compression refrigeration apparatus for temperature control of the permafrost subgrade[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(S1):3044-3052. (in Chinese)
[17] 刘建坤, 胡田飞, 郝中华. 多年冻土区路基用太阳能吸附式制冷管的试验研究[J]. 铁道学报, 2021, 43(8):139-146. LIU J K, HU T F, HAO Z H. Experimental study on solar adsorption refrigeration tube for subgrade engineering in Permafrost Regions[J]. Journal of the China Railway Society, 2021, 43(8):139-146. (in Chinese)
[18] 陈坤, 俞祁浩, 郭磊, 等. 基于灌注桩试验的多年冻土区桩-土传热过程分析[J]. 岩石力学与工程学报, 2020, 39(7):1483-1492. CHEN K, YU Q H, GUO L, et al. Analysis of pile-soil heat transfer process based on field test in permafrost regions[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(7):1483-1492. (in Chinese)
[19] SUN Z H, LIU J K, HU T F, et al. A solar compression refrigeration apparatus to cool permafrost embankment[J]. Applied Thermal Engineering, 2023, 223:120034.
[20] SUN Z H, LIU J K, HU T F, et al. Design and cooling performance analysis of the temperature-controlled pile (TCP) in permafrost regions[J]. Cold Regions Science and Technology, 2023, 205:103714.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn