Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2024, Vol. 64 Issue (5): 911-921    DOI: 10.16511/j.cnki.qhdxxb.2023.27.007
  公共安全 本期目录 | 过刊浏览 | 高级检索 |
基于林火风险的高压输电线路无人机巡检路径规划
张佳庆1, 孙韬1, 蒋弘瑞2, 段君瑞2, 缪煦扬1, 纪杰2
1. 国网安徽省电力有限公司电力科学研究院 电力火灾与安全防护安徽省重点实验室, 合肥 230601;
2. 中国科学技术大学 火灾科学国家重点实验室, 合肥 230026
Path planning for transmission line unmanned aircraft inspection based on forest fire risk
ZHANG Jiaqing1, SUN Tao1, JIANG Hongrui2, DUAN Junrui2, MIAO Xuyang1, JI Jie2
1. Anhui Province Key Laboratory of Electric Fire and Safety Protection, State Grid Anhui Electric Power Research Institute, Hefei 230601, China;
2. State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, China
全文: PDF(8819 KB)   HTML 
输出: BibTeX | EndNote (RIS)      
摘要 跨越林区的高压输电线路建设存在诱发森林火灾的风险, 因此必须重视高压输电线路的巡检工作。目前, 以防范林区火灾风险为目的开展的无人机巡检路径规划的相关研究较少, 且已有研究未针对电网系统的运维安全, 也未考虑各火灾风险因素间的相互影响。因此, 该文提出一种基于网络分析法(analytic network process, ANP)和遗传算法(genetic algorithm, GA)的森林电网无人机巡检路径规划方法。首先结合历史数据和实地调研, 识别出影响森林火灾风险的典型因素, 并对所在线路及周边林区开展火灾风险评估, 划分出高火险区域; 再将这些高火险区域设置为巡检节点, 基于GA规划出最短的无人机巡检路径。此外, 提出一种基于最大偏转角约束的路径优化方法, 对路径中不满足最大偏转角约束的节点进行了优化。该文以中国安徽省某重要输电通道线路3542#-3547#为应用对象, 评估得出了线路周边存在10处高火险区域, 规划出长度为5 391.72 m的无人机巡检路径, 再利用最大偏转角约束的方法进行路径优化, 优化后的路径总长为5 401.36 m, 仅比原路径增长了0.179 %。该文提出的无人机巡检路径规划方法以火灾风险评估为基础, 兼顾了各林火风险因素间的相互影响, 可以为后续林区高压输电线路的无人机巡检路径规划相关研究提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张佳庆
孙韬
蒋弘瑞
段君瑞
缪煦扬
纪杰
关键词 高压输电线路无人机路径规划林区火灾网络分析法(ANP)遗传算法(GA)    
Abstract:[Objective] With the establishment of high-voltage transmission lines across forested areas, their inspection becomes crucial to reduce the fire risk of transmission lines and forest areas. At present, few studies have studied the path planning for unmanned aircraft inspection of transmission lines based on the fire risk in forest areas, but they do not address the security of the operation and maintenance of the power grid system or consider the interactions between different influencing factors. Therefore, an unmanned aerial vehicle path planning framework for forest power grid inspection is proposed based on the analytic network process method and genetic algorithm. Moreover, a path optimization method based on the maximum deflection angle constraint is developed. [Methods] After determining the assessment routes, the framework integrates field research and historical data to determine the objective data of these routes and identifies six classes of factors affecting the risk of forest fires: combustible factors, terrain factors, meteorological factors, human factors, surface wet conditions, and rescue conditions. These factors are subdivided into 18 typical factors by researching the historical accident cases and related literature. The forest fire risk indicator system is developed using typical factors, and to guarantee that this indicator system can effectively reflect the actual risk level, herein, the typical factors selected are those that are commonly used and recognized by previous researchers. Subsequently, weights for these typical factors are computed based on the analytic network process. Compared with the hierarchical analysis method, which is traditionally applied in earlier works, the network analysis method has the advantage of considering the interactions between the factors. The weights with objective data are combined to calculate the fire risk value for each grid. The high fire risk grids are employed as inspection nodes, and the shortest inspection path is acquired using path planning via the unmanned aerial vehicle inspection based on the genetic algorithm to reach the objective of obtaining real-time data in a short time, at low cost, and with high coverage. For the nodes in the path that do not meet the maximum deflection angle constraint, path optimization is conducted by adding new optimization nodes and the shortest path is ensured under the condition that the roadbed meets the maximum deflection angle constraint. [Results] Sections #3542—#3547 of the line of an important transmission channel in Anhui are taken as an application object. Ten high fire risk areas around the line are determined, and path planning is performed on them. The proposed framework yields an optimal path length of 5 391.72 m, and the path length optimized based on the maximum deflection angle is 5 401.36 m. Here, the path length is only increased by 0.179 % compared with the original one. This indicates that the path optimization method not only makes the original path satisfy the constraint of maximum deflection angle, but also increases the path length to be shorter, which has good optimization effect. [Conclusions] This work presents a path planning framework for the unmanned aerial vehicle inspection based on the results of fire risk assessment considering the interactions between various forest fire risk factors. In addition, the proposed path optimization method can make the path satisfy all constraints with a small increase in the path length. The proposed framework and optimization method offer reference and future ideas for realizing the unmanned aerial vehicle inspection of transmission lines in forest areas.
Key wordshigh-voltage transmission lines    unmanned aircraft path planning    forest fires    analytic network process(ANP)    genetic algorithm(GA)
收稿日期: 2023-09-19      出版日期: 2024-04-22
基金资助:国家重点研发计划项目(2022YFC3003101);国网安徽省电力有限公司科技项目(521205220001)
通讯作者: 纪杰,研究员,E-mail:jijie232@ustc.edu.cn     E-mail: jijie232@ustc.edu.cn
引用本文:   
张佳庆, 孙韬, 蒋弘瑞, 段君瑞, 缪煦扬, 纪杰. 基于林火风险的高压输电线路无人机巡检路径规划[J]. 清华大学学报(自然科学版), 2024, 64(5): 911-921.
ZHANG Jiaqing, SUN Tao, JIANG Hongrui, DUAN Junrui, MIAO Xuyang, JI Jie. Path planning for transmission line unmanned aircraft inspection based on forest fire risk. Journal of Tsinghua University(Science and Technology), 2024, 64(5): 911-921.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2023.27.007  或          http://jst.tsinghuajournals.com/CN/Y2024/V64/I5/911
[1] 潘静, 马宁, 黄颖, 等. 基于AHP的森林火灾防御能力评价研究[C]//中国视角的风险分析和危机反应——中国灾害防御协会风险分析专业委员会第四届年会论文集. 长春:ATLANTIS出版社, 2010. PAN J, MA N, HUANG Y, et al. An appraisal method of forest fires prevention ability based on AHP[C]//Chinese Perspective on Risk Analysis and Crisis Resonse-RAC. Changchun, China:ATLANTIS Publishing House, 2010. (in Chinese)
[2] 张睿卓. 基于多源数据的林区电力走廊安全风险评估方法[D]. 武汉:武汉大学, 2020. ZHANG R Z. Safety assessment of power transmission corridors in forestry area based on multi-source data[D]. Wuhan:Wuhan University, 2020. (in Chinese)
[3] KOHN E. Mitigating PG&E's wildfire ignitions:A framework for environmental resilience and economic stimulus[J]. The George Washington Journal of Energy and Environmental Law, 2021, 12(1):3.
[4] 李哲远. 110kV架空输电线路无人机巡检路径智能优化[D]. 太原:太原科技大学, 2021. LI Z Y. Intelligent optimization of UAV inspection path for 110kV overhead transmission line[D]. Taiyuan:Taiyuan University of Science And Technology, 2021. (in Chinese)
[5] 罗旋. 基于鱼群算法无人机电力巡检航线规划研究[D]. 南昌:南昌大学, 2019. LUO X. Research on route planning of UAV power inspection based on fish swarm algorithm[D]. Nanchang:Nanchang University, 2019. (in Chinese)
[6] 周天任. 车载无人机电力巡检路径规划问题研究[D]. 长沙:国防科技大学, 2018. ZHOU T R. Research on route planning problem of vehicle and its mounted unmanned aerial vehicle with wire line inspection[D]. Changsha:National University of Defense Technology, 2018. (in Chinese)
[7] 张运楚, 梁自泽, 谭民. 架空电力线路巡线机器人的研究综述[J]. 机器人, 2004, 26(5):467-473. ZHANG Y C, LIANG Z Z, TAN M. Mobile robot for overhead powerline inspection-a review[J]. Robot, 2004, 26(5):467-473. (in Chinese)
[8] 张友民, 余翔, 屈耀红, 等. 无人机自主控制关键技术新进展[J]. 科技导报, 2017, 35(7):39-48. ZHANG Y M, YU X, QU Y H, et al. New developments on key techniques in UAV autonomous control[J]. Science & Technology Review, 2017,35(7):39-48. (in Chinese)
[9] WANG Z Y, GAO Q, XU J B, et al. A review of UAV power line inspection[C]//Proceedings of the Advances in Guidance, Navigation and Control. Tianjin, China:Springer, 2022.
[10] MONTAMBAULT S, BEAUDRY J, TOUSSAINT K, et al. On the application of VTOL UAVs to the inspection of power utility assets[C]//Proceedings of the 20101st International Conference on Applied Robotics for the Power Industry. Montreal, Canada:IEEE, 2010.
[11] 柳长安. 无人机航路规划方法研究[D]. 西安:西北工业大学, 2003. LIU C A. Research on UAV route planning methodology[D]. Xi'an:Northwestern Polytechnical University, 2003. (in Chinese)
[12] JEONG S, SIMEONE O, KANG J. Mobile edge computing via a UAV-mounted cloudlet:Optimization of bit allocation and path planning[J]. IEEE Transactions on Vehicular Technology, 2018, 67(3):2049-2063.
[13] MOYO T, DU PLESSIS F. The use of the travelling salesman problem to optimise power line inspections[C]//Proceedings of the 20136th Robotics and Mechatronics Conference (RobMech) Durban, South Africa:IEEE, 2013.
[14] BAIK H, VALENZUELA J. Unmanned aircraft system path planning for visually inspecting electric transmission towers[J]. Journal of Intelligent & Robotic Systems, 2019, 95(3):1097-1111.
[15] 黄书召, 田军委, 乔路, 等. 基于改进遗传算法的无人机路径规划[J]. 计算机应用, 2021, 41(2):390-397. HUANG S Z, TIAN J W, QIAO L, et al. Unmanned aerial vehicle path planning based on improved genetic algorithm[J]. Journal of Computer Applications, 2021, 41(2):390-397. (in Chinese)
[16] ZHOU J Z, ZHANG W, ZHANG Y Z, et al. Optimal path planning for UAV patrolling in forest fire prevention[C]//Proceedings of the 2018 Asia-Pacific International Symposium on Aerospace Technology. Singapore:Springer, 2019.
[17] ZHANG H, DOU L, XIN B, et al. Data collection task planning of a fixed-wing unmanned aerial vehicle in forest fire monitoring[J]. IEEE Access, 2021, 9:109847-109864.
[18] ZHAO P C, ZHANG F Q, LIN H F, et al. GIS-based forest fire risk model:A case study in Laoshan national forest park, Nanjing[J]. Remote Sensing, 2021, 13(18):3704.
[19] XU Y Q, LI J M, ZHANG F Q. A UAV-based forest fire patrol path planning strategy[J]. Forests, 2022, 13(11):1952.
[20] D'ODORICO P, PORPORATO A. Preferential states in soil moisture and climate dynamics[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(24):8848-8851.
[21] KHALOO A, LATTANZI D, CUNNINGHAM K, et al. Unmanned aerial vehicle inspection of the Placer River Trail Bridge through image-based 3D modelling[J]. Structure and Infrastructure Engineering, 2018, 14(1):124-136.
[22] 白夜, 王博, 武英达, 等. 2021年全球森林火灾综述[J]. 消防科学与技术, 2022, 41(5):705-709. BAI Y, WANG B, WU Y D, et al. A review of global forest fires in 2021[J]. Fire Science and Technology, 2022, 41(5):705-709. (in Chinese)
[23] 四川凉山西昌"3·30"森林火灾事件调查结果公布[J]. 消防界, 2021, 7(2):27. The investigation results of the March 30 forest fire in Xichang, Liangshan, Sichuan, were announced[J]. Fire Services, 2021, 7(2):27. (in Chinese)
[24] 黄琼, 司颖, 王浩宇. 基于加权贝叶斯网络的森林火灾风险评估[J]. 消防科学与技术, 2021, 40(11):1671-1676. HUANG Q, SI Y, WANG H Y. Forest fire risk assessment based on weighted Bayesian network[J]. Fire Science and Technology, 2021, 40(11):1671-1676. (in Chinese)
[25] 鞠伟轶, 吴洁, 周思宇, 等. 基于博弈论组合赋权的森林火灾风险评估[J]. 消防科学与技术, 2022, 41(2):252-256. JU W Y, WU J, ZHOU S Y, et al. Forest fire risk assessment based on combination weighting of game theory[J]. Fire Science and Technology, 2022, 41(2):252-256. (in Chinese)
[26] SHARMA L K, KANGA S, NATHAWAT M S, et al. Fuzzy AHP for forest fire risk modeling[J]. Disaster Prevention and Management:An International Journal, 2012, 21(2):160-171.
[27] NUTHAMMACHOT N, STRATOULIAS D. Multi-criteria decision analysis for forest fire risk assessment by coupling AHP and GIS:method and case study[J]. Environment, Development and Sustainability, 2021, 23(12):17443-17458.
[28] 蒋琴, 钟少波, 朱伟. 京津冀地区森林火灾综合风险评估[J]. 中国安全科学学报, 2020, 30(10):119-125. JIANG Q, ZHONG S B, ZHU W. Research on comprehensive risk assessment of forest fire in Beijing-Tianjin-Hebei region[J]. China Safety Science Journal, 2020, 30(10):119-125. (in Chinese)
[29] 李韩. 燃料床宽度对上坡火蔓延影响的实验及理论研究[D]. 合肥:中国科学技术大学, 2020. LI H. Effects of fuel bed width on upslope fire spread:Experimental and theoretical study[D]. Hefei:University of Science and Technology of China, 2020. (in Chinese)
[30] SAATY T L, VARGAS L G. Decision making with the analytic network process[M]. Boston, USA:Springer, 2013.
[31] 洪亮, 张柯, 覃亚伟, 等. 基于ANP的PPP模式大型基础设施建设风险研究[J]. 土木工程与管理学报, 2021,38(6):100-105. HONG L, ZHANG K, QIN Y W, et al. Study on the risks of large-scale infrastructure construction in PPP mode based on analytic network process[J]. Journal of Civil Engineering and Management, 2021,38(6):100-105. (in Chinese)
[32] MITRA G, GREENBERG H J, LOOTSMAF A, et al. Mathematical models for decision support[M]. Berlin, Germany:Springer, 1988.
[33] HARKER P, VARGAS L. Reply to "Remarks on the analytic hierarchy process" by J. S. Dyer[J]. Management Science, 1990, 36(3):269-273.
[34] GUSTAFSON E J, MIRANDA B R, DE BRUIJIN A M G, et al. Do rising temperatures always increase forest productivity? Interacting effects of temperature, precipitation, cloudiness and soil texture on tree species growth and competition[J]. Environmental Modelling & Software, 2017, 97:171-183.
[35] KANE R, LUTZ J A, CANSLER C A, et al. Water balance and topography predict fire and forest structure patterns[J]. Forest Ecology and Management, 2015, 338:1-13.
[36] RARDIN R L, UZSOY R. Experimental evaluation of heuristic optimization algorithms:A tutorial[J]. Journal of Heuristics, 2001, 7(3):261-304.
[37] HOLLAND J H. Genetic algorithms[J]. Scientific American, 1992, 267(1):66-72.
[38] LAMINI C, BENHLIMA S, ELBEKRI A. Genetic algorithm based approach for autonomous mobile robot path planning[J]. Procedia Computer Science, 2018, 127:180-189.
[39] ROBERGE V, TARBOUCHI M, LABONTE G. Comparison of parallel genetic algorithm and particle swarm optimization for real-time UAV path planning[J]. IEEE Transactions on Industrial Informatics, 2013, 9(1):132-141.
[1] 吐松江·卡日, 高文胜, 张紫薇, 莫文雄, 王红斌, 崔屹平. 基于支持向量机和遗传算法的变压器故障诊断[J]. 清华大学学报(自然科学版), 2018, 58(7): 623-629.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn