Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2024, Vol. 64 Issue (5): 922-932    DOI: 10.16511/j.cnki.qhdxxb.2024.22.003
  公共安全 本期目录 | 过刊浏览 | 高级检索 |
基于机器学习的火源热释放速率预测方法
杨云浩1, 张国维1, 朱国庆1, 袁狄平1, 贺名欢2,3
1. 中国矿业大学 深圳研究院, 深圳 518057;
2. 瑞能赛特(深圳)科技有限公司, 深圳 518118;
3. 江苏费尔曼安全科技有限公司, 徐州 221100
Machine learning based prediction method for the heat release rate of a fire source
YANG Yunhao1, ZHANG Guowei1, ZHU Guoqing1, YUAN Diping1, HE Minghuan2,3
1. Shenzhen Research Institute, China University of Mining and Technology, Shenzhen 518057, China;
2. Ruinengsaite Technology (Shenzhen) Co., Ltd., Shenzhen 518118, China;
3. Jiangsu Firemana Safety Technology Co., Ltd., Xuzhou 221100, China
全文: PDF(7044 KB)   HTML 
输出: BibTeX | EndNote (RIS)      
摘要 火源热释放速率的准确测量对深入理解火灾演变过程至关重要, 然而目前被广泛使用的氧耗法所需设备造价昂贵, 成本较高。该文提出了一种基于机器学习的综合性框架, 用于输入温度数据预测火源热释放速率。基于火灾动力学模拟(FDS)软件模拟ISO 9705房间内不同参数的火灾场景, 获取不同位置的温度数据, 并建立火灾数据库。分别基于最小绝对收缩和选择(Lasso)、随机森林(RF)两种模型的递归特征消除(RFE)算法进行特征筛选, 得到两个不同的低维特征子集, 并设置对照组。基于不同的特征子集, 分析比较了线性回归(LR)、K 最近邻(KNN)和轻量级梯度提升机(LightGBM) 3种典型模型对热释放速率的预测性能。结果表明:基于随机森林模型的递归特征消除算法筛选所得的特征子集训练的LightGBM模型预测效果最佳, 预测结果的根均方误差(RMSE)和均绝对误差(MAE)分别为23.89 kW和15.49 kW, 决定系数为0.9916。该基于机器学习的综合性框架预测效果优异且实施成本较低, 为预测火源热释放速率提供了有效途径。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词 热释放速率机器学习特征筛选递归特征消除回归预测    
Abstract:[Objective] An accurate measurement of the heat release rate (HRR) of a fire source is crucial for thoroughly understanding the fire evolution process. However, the commonly used oxygen consumption method requires expensive equipment, leading to high operational costs. According to the energy conservation principle, heat released per unit of time during material combustion is closely related to the increase of the room temperature. Machine learning methods have demonstrated considerable potential for exploring relationships between several independent and dependent variables, and attempts have been made to predict fire parameters based on temperature. Therefore, based on previous studies, this paper proposes a comprehensive machine learning framework to predict the HRR using temperature data as input. Furthermore, feature selection techniques are innovatively introduced to obtain key location temperatures to maximize HRR prediction accuracy. First, fire scenarios with different parameters are simulated in an ISO 9705 room using the fire dynamics simulator (FDS) software. Temperature data at different locations are obtained by gridding thermocouples, and a fire database is constructed. Subsequently, feature selection using recursive feature elimination (RFE) algorithms based on least absolute shrinkage and selection operator (Lasso) and random forest (RF) is performed to obtain two different low-dimensional subsets from high-dimensional simulated temperature features. Control groups with the same number of features are established. Finally, the performance of three typical models, namely, linear regression (LR), K-nearest neighbors (KNN), and light gradient boosting machine (LightGBM), for predicting the HRR are compared using different feature subsets. The results show that using the subset obtained by RFE based on RF, the LightGBM model demonstrates the lowest root mean square error (RMSE) and mean absolute error (MAE) values of 23.89 kW and 15.49 kW, respectively, indicating the least difference between its predicted and observed values. Furthermore, regarding the coefficient of determination, the LightGBM model reaches the highest value of 0.991 6, close to 1, thereby demonstrating its superior fitting capability. This is primarily due to the complex nonlinear relationship between the trained temperature dataset and HRR. Compared to the KNN and LR models, the histogram algorithm and the leaf-wise growth strategy with a depth limit enable the LightGBM model to give full play to its advantages. Tree-based models, such as LightGBM and XGBoost, can also be used for algorithm model-level improvements in the future. Additionally, deep learning models, such as multilayer fully connected and convolutional neural networks, can be utilized for fitting complex mappings. Compared with LightGBM models trained with manual feature subsets, RFE based on RF decreases the prediction errors (RMSE and MAE values decrease by 46.54 % and 50.66 %, respectively). The coefficient of determination also increases by 2.1 %, validating that this feature selection method can considerably improve prediction accuracy over manual feature selection. This paper proposes a comprehensive machine learning framework to obtain thermocouple temperature through the FDS fire simulation and then combines the feature selection and prediction models for HRR prediction, substantially improving prediction accuracy over manual feature selection. This comprehensive framework has theoretical and practical significance, thereby opening new pathes for HRR prediction. Subsequent research studies will construct additional comprehensive fire databases, increase the number of feature parameters, or explore algorithm combinations to improve HRR prediction.
Key wordsheat release rate    machine learning    feature selection    recursive feature elimination    regression prediction
收稿日期: 2023-09-28      出版日期: 2024-04-22
基金资助:国家重点研发计划(2022YFC3090503);深圳市自然科学基金面上项目(JCYJ20220530164601004);安全生产应急救援急需技术装备揭榜攻关项目(JBGGRW-2022-09)
通讯作者: 张国维,教授,E-mail:zgw119xz@126.com     E-mail: zgw119xz@126.com
引用本文:   
杨云浩, 张国维, 朱国庆, 袁狄平, 贺名欢. 基于机器学习的火源热释放速率预测方法[J]. 清华大学学报(自然科学版), 2024, 64(5): 922-932.
YANG Yunhao, ZHANG Guowei, ZHU Guoqing, YUAN Diping, HE Minghuan. Machine learning based prediction method for the heat release rate of a fire source. Journal of Tsinghua University(Science and Technology), 2024, 64(5): 922-932.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2024.22.003  或          http://jst.tsinghuajournals.com/CN/Y2024/V64/I5/922
[1] BABRAUSKAS V, PEACOCK R D. Heat release rate:The single most important variable in fire hazard[J]. Fire Safety Journal, 1992, 18(3):255-272.
[2] 程远平, 陈亮, 张孟君. 火灾过程中火源热释放速率模型及其实验测试方法[J]. 火灾科学, 2002, 11(2):70-74. CHENG Y P, CHEN L, ZHANG M J. The models and experimental testing method of heat release rate of fuel during the development of fire[J]. Fire Safety Science, 2002, 11(2):70-74. (in Chinese)
[3] THORNTON W M. XV. The relation of oxygen to the heat of combustion of organic compounds[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1917, 33(194):196-203.
[4] HUGGETT C. Estimation of rate of heat release by means of oxygen consumption measurements[J]. Fire and Materials, 1980, 4(2):61-65.
[5] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 火灾试验表面制品的实体房间火试验方法:GB/T 25207-2010[S]. 北京:中国标准出版社, 2010. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Fire tests:Full-scale room test for surface products:GB/T 25207-2010[S]. Beijing:Standards Press of China, 2010. (in Chinese)
[6] 孙利民, 尚志强, 夏烨. 大数据背景下的桥梁结构健康监测研究现状与展望[J]. 中国公路学报, 2019, 32(11):1-20. SUN L M, SHANG Z Q, XIA Y. Development and prospect of bridge structural health monitoring in the context of big data[J]. China Journal of Highway and Transport, 2019, 32(11):1-20. (in Chinese)
[7] 乔莹莹. 基于数值预测的机器学习相关算法综述[J]. 安阳工学院学报, 2017, 16(4):71-74. QIAO Y Y. Summarization of machine learning based on numerical prediction[J]. Journal of Anyang Institute of Technology, 2017, 16(4):71-74. (in Chinese)
[8] 林岚, 王婧璇, 付振荣, 等. 脑老化中脑年龄预测模型研究综述[J]. 生物医学工程学杂志, 2019, 36(3):493-498. LIN L, WANG J X, FU Z R, et al. A review on brain age prediction in brain ageing[J]. Journal of Biomedical Engineering, 2019, 36(3):493-498. (in Chinese)
[9] 高超, 林红蕾, 胡海清, 等. 我国林火发生预测模型研究进展[J]. 应用生态学报, 2020, 31(9):3227-3240. GAO C, LIN H L, HU H Q, et al. A review of models of forest fire occurrence prediction in China[J]. Chinese Journal of Applied Ecology, 2020, 31(9):3227-3240. (in Chinese)
[10] 吴浩, 牛风雷. 高温球床辐射传热中的机器学习模型[J]. 清华大学学报(自然科学版), 2023, 63(8):1213-1218. WU H, NIU F L. Machine learning model of radiation heat transfer in the high-temperature nuclear pebble bed[J]. Journal of Tsinghua University (Science and Technology), 2023, 63(8):1213-1218. (in Chinese)
[11] DENG L, SHI C L, LI H R, et al. Prediction of energy mass loss rate for biodiesel fire via machine learning and its physical modeling of flame radiation evolution[J]. Energy, 2023, 275:127388.
[12] SAEED F, PAUL A, HONG W H, et al. Machine learning based approach for multimedia surveillance during fire emergencies[J]. Multimedia Tools and Applications, 2020, 79(23-24):16201-16217.
[13] 刘全义, 朱博, 邓力, 等. 基于机器学习的双参数火灾探测方法[J]. 中国安全科学学报, 2022, 32(5):90-96. LIU Q Y, ZHU B, DENG L, et al. Double parameters fire detection method based on machine learning[J]. China Safety Science Journal, 2022, 32(5):90-96. (in Chinese)
[14] WU X Q, ZHANG X N, HUANG X Y, et al. A real-time forecast of tunnel fire based on numerical database and artificial intelligence[J]. Building Simulation, 2022, 15(4):511-524.
[15] ZHANG X N, WU X Q, PARK Y, et al. Perspectives of big experimental database and artificial intelligence in tunnel fire research[J]. Tunnelling and Underground Space Technology, 2021, 108:103691.
[16] WU X Q, PARK Y, LI A, et al. Smart detection of fire source in tunnel based on the numerical database and artificial intelligence[J]. Fire Technology, 2021, 57(2):657-682.
[17] HODGES J L, LATTIMER B Y, LUXBACHER K D. Compartment fire predictions using transpose convolutional neural networks[J]. Fire Safety Journal, 2019, 108:102854.
[18] MCGRATTAN K B, MCDERMOTT R, WEINSCHENK C. Fire dynamics simulator technical reference guide volume 1:Mathematical model. (2021-11-20). https://www.nist.gov/publications/fire-dynamics-simulator-technical-reference-guide-volume-1-mathematical-model.
[19] 杨晓菡, 何学超, 邓玲. ISO 9705房间实体火灾试验及FDS模拟研究[J]. 消防科学与技术, 2016, 35(7):920-924. YANG X H, HE X C, DENG L. Research of ISO 9705 room fire test and FDS simulation[J]. Fire Science and Technology, 2016, 35(7):920-924. (in Chinese)
[20] 朱五八. 不同通风状况下典型软垫家具火灾特性研究[D]. 合肥:中国科学技术大学, 2007. ZHU W B. The study on effect of ventilation on fire behavior of typical upholstered furniture[D]. Hefei:University of Science and Technology of China, 2007. (in Chinese)
[21] DRYSDALE D. An introduction to fire dynamics[M]. 3rd ed. New York, USA:John Wiley & Sons, 2011.
[22] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 消防安全工程第4部分:设定火灾场景和设定火灾的选择:GB/T 31593.4-2015[S]. 北京:中国标准出版社, 2015. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Fire safety engineering Part 4:Selection of design fire scenarios and design fires:GB/T 31593.4-2015[S]. Beijing:Standards Press of China, 2015. (in Chinese)
[23] MCGRATTAN K, HOSTIKKA S, FLOYD J, et al. Fire dynamics simulator user's guide. (2021-11-20). https://pages.nist.gov/fds-smv/manuals.html.
[24] BAUM H R, MCCAFFREY B J. Fire induced flow field-theory and experiment[J]. Fire Safety Science, 1989, 2:129-148.
[25] YU L, LIU H. Efficient feature selection via analysis of relevance and redundancy[J]. The Journal of Machine Learning Research, 2004, 5(12):1205-1224.
[26] KOHAVI R, JOHN G H. Wrappers for feature subset selection[J]. Artificial Intelligence, 1997, 97(1-2):273-324.
[27] GUYON I, WESTON J, BARNHILL S, et al. Gene selection for cancer classification using support vector machines[J]. Machine Learning, 2002, 46(1-3):389-422.
[28] TIBSHIRANI R. Regression shrinkage and selection via the Lasso:A retrospective[J]. Journal of the Royal Statistical Society Series B:Statistical Methodology, 2011, 73(3):273-282.
[29] 李根, 邹国华, 张新雨. 高维模型选择方法综述[J]. 数理统计与管理, 2012, 31(4):640-658. LI G, ZOU G H, ZHANG X Y. Model selection for high-dimensional data:A review[J]. Journal of Applied Statistics and Management, 2012, 31(4):640-658. (in Chinese)
[30] VERIKAS A, GELZINIS A, BACAUSKIENE M. Mining data with random forests:A survey and results of new tests[J]. Pattern Recognition, 2011, 44(2):330-349.
[31] 张晓利, 陆化普. 非参数回归方法在短时交通流预测中的应用[J]. 清华大学学报(自然科学版), 2009, 49(9):1471-1475. ZHANG X L, LU H P. Non-parametric regression and application for short-term traffic flow forecasting[J]. Journal of Tsinghua University (Science and Technology), 2009, 49(9):1471-1475. (in Chinese)
[32] 曹莹, 苗启广, 刘家辰, 等. AdaBoost算法研究进展与展望[J]. 自动化学报, 2013, 39(6):745-758. CAO Y, MIAO Q G, LIU J C, et al. Advance and prospects of AdaBoost algorithm[J]. Acta Automatica Sinica, 2013, 39(6):745-758. (in Chinese)
[33] KE G L, MENG Q, FINLEY T, et al. LightGBM:A highly efficient gradient boosting decision tree[C]//31st Conference on Neural Information Processing Systems. Long Beach, USA:NIPS, 2017:3146-3154.
[34] FAN J L, MA X, WU L F, et al. Light gradient boosting machine:An efficient soft computing model for estimating daily reference evapotranspiration with local and external meteorological data[J]. Agricultural Water Management, 2019, 225:105758.
[1] 贾旭宏, 汤婧, 马俊豪, 田威, 张晓宇, 代尚沛, 丁思婕. 低气压富氧环境对典型织物燃烧特性的影响[J]. 清华大学学报(自然科学版), 2024, 64(1): 164-172.
[2] 吴浩, 牛风雷. 高温球床辐射传热中的机器学习模型[J]. 清华大学学报(自然科学版), 2023, 63(8): 1213-1218.
[3] 代鑫, 黄弘, 汲欣愉, 王巍. 基于机器学习的城市暴雨内涝时空快速预测模型[J]. 清华大学学报(自然科学版), 2023, 63(6): 865-873.
[4] 任建强, 崔亚鹏, 倪顺江. 基于机器学习的新冠肺炎疫情趋势预测方法[J]. 清华大学学报(自然科学版), 2023, 63(6): 1003-1011.
[5] 安健, 陈宇轩, 苏星宇, 周华, 任祝寅. 机器学习在湍流燃烧及发动机中的应用与展望[J]. 清华大学学报(自然科学版), 2023, 63(4): 462-472.
[6] 段君瑞, 何明铭, 胡皓玮, 纪杰. 正向风作用下的对开口腔室火灾行为[J]. 清华大学学报(自然科学版), 2023, 63(10): 1502-1511.
[7] 赵祺铭, 毕可鑫, 邱彤. 基于机器学习的乙烯裂解过程模型比较与集成[J]. 清华大学学报(自然科学版), 2022, 62(9): 1450-1457.
[8] 曹来成, 李运涛, 吴蓉, 郭显, 冯涛. 多密钥隐私保护决策树评估方案[J]. 清华大学学报(自然科学版), 2022, 62(5): 862-870.
[9] 王豪杰, 马子轩, 郑立言, 王元炜, 王飞, 翟季冬. 面向新一代神威超级计算机的高效内存分配器[J]. 清华大学学报(自然科学版), 2022, 62(5): 943-951.
[10] 陆思聪, 李春文. 基于场景与话题的聊天型人机会话系统[J]. 清华大学学报(自然科学版), 2022, 62(5): 952-958.
[11] 李维, 李城龙, 杨家海. As-Stream:一种针对波动数据流的算子智能并行化策略[J]. 清华大学学报(自然科学版), 2022, 62(12): 1851-1863.
[12] 刘强墨, 何旭, 周佰顺, 吴昊霖, 张弛, 秦羽, 沈晓梅, 高小榕. 基于机器学习和瞳孔响应的简易高性能自闭症分类模型[J]. 清华大学学报(自然科学版), 2022, 62(10): 1730-1738.
[13] 马晓悦, 孟啸. 用户参与视角下多图推文的图像位置和布局效应[J]. 清华大学学报(自然科学版), 2022, 62(1): 77-87.
[14] 汤志立, 王雪, 徐千军. 基于过采样和客观赋权法的岩爆预测[J]. 清华大学学报(自然科学版), 2021, 61(6): 543-555.
[15] 王志国, 章毓晋. 监控视频异常检测:综述[J]. 清华大学学报(自然科学版), 2020, 60(6): 518-529.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn